

Bridging our knowledge gap of supernova properties in the infrared

Eric Y. Hsiao 蕭亦麒 Florida State University

Carnegie Supernova Project-II (CSP-II)

Magellan Telescope

Las Campanas Observatory

Phillips et al. (2019) Hsiao et al. (2019)

Carnegie Supernova Project-II (CSP-II)

Type IIP/IIL

- In the optical, IIP/IIL show a continuous range of photometric and spectroscopic properties.
- Suggests a single family.
- IIP/IIL sub-classifications may be an arbitrary one.

Type IIP/IIL

- However, NIR spectra show a clear dichotomy: ^{1.02} weak and strong He I 1.083µm.
- Surprisingly, types weak/strong correspond to IIP/IIL, contradicting optical results. ^{1.01}
- High-velocity He feature may be formed by interaction^{0.99} with circumstellar material.

Based on 81 NIR spectra

7 Eric Y. Hsiao ehsiao@fsu.edu

SE-SN

- The mass-loss mechanisms for high-mass stars are uncertain.
- In particular, how does the progenitor star of a Type Ic get stripped of both its H and He envelopes?
- Do Type Ic's in fact harbor He, but not detected in the optical?

SE-SN

- PCA detects two distinct groups.
 - He-rich: He I, Mg I
 - He-poor: C I, Mg II
- They correspond perfectly to the optical lb/lc with the main difference at the 2 µm feature.

SE-SN

- 1/2 of the SNe Ic in our sample show weak He I 2.058µm features.
- There are sometimes multiple components present at different velocities and phases.

Type la

- Consensus:
 C/O WD undergoing thermonuclear explosion.
- But there are intense debates on the explosion mechanisms and progenitor systems, particularly for normal la used in cosmology.

unburned material

intermediate mass elements

> radioactive iron-group elements

> stable iron-group elements

Mch

14 Eric Y. Hsiao ehsiao@fsu.edu

radioactive iron-group intermediate mass element

radioactive iron-group elements

sub-Mch

15 Eric Y. Hsiao ehsiao@fsu.edu

Unburned C

- C is the most direct tracer of unburned material.
- Mch predicts an increasing • amount of carbon for dimmer SNe. (consistent with observations.)
- sub-Mch predicts • little carbon due to surface detonation.

 $\log_{10}(F_{\lambda}) + constant$ 2.1ica Wyatt et al. (2021) 1.050.60.651.0velocity (10³ km/s) -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 -20-10 0 1.4 optical C II NIR C I λ0.6580 λ1.0693 1.2 $\log_{10}(F_{\lambda})$ + constant 1.0 0.8 0.6 0.4 – C II – – C I – all ions – – all ions – – C II dimmer 0.2 SN 1999by $\Delta m_{15} = 1.98$ iPTF13ebh $\Delta m_{15} = 1.76$ SN 2014J $\Delta m_{15} = 1.11$ SN 2011fe $\Delta m_{15} = 1.06$ ASASSN141 $\Delta m_{15} = 0.85$ faster 0.0 0.65 1.00 1.05 0.60 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 0.60 0.65 1.00 1.05 rest wavelength (μ m) Hsiao et al. (2019)

SN2015bp

0 -20 -10

-10.9

0

-20 -10

Radioactive Ni

- The NIR H-band break is the most prominent feature for la.
- Strength of the break depends on the Ni mass.
- Rate at which it is exposed depends on the mass of the "shielding" intermediate-mass elements.
- Strong correlation between strength and decline rate is observed.

Explosion kinematics

- Late-phase nebular spectra probe the center of an explosion.
- Optical nebular spectra are formed by many blends of forbidden lines.
- The NIR [Fe II] 1.644µm line is strong/isolated and allows for detailed studies of central density, magnetic fields, and explosion kinematics.

NIR cosmology

- We built SED templates crucial for NIR cosmology using a novel technique.
 - Reduce the dimensionality of the spectral data using PCA, quantifying the spectral properties.
 - Model the phase and LC shape dependence of the spectral properties using Gaussian process.

Lu, Hsiao et al. in prep Based on 331 NIR spectra

NIR cosmology

Summary

