Prism SN Spectroscopy with the Nancy Grace Roman Space Telescope

David Rubin et al., in prep. University of Hawai'i at Mānoa Feb 8th 2022

Why SN Spectroscopy?

SPACE TELESCOPE

	Direct Value of Prism-Observed SNe	Value of Prism- Observed SNe to Imaging-Only SNe	
SN Redshifts	Early, self-contained	Test/training host- galaxy association	
SN Typing	(no waiting on host- galaxy redshifts)	Test/training photometric classification	
SN Subclassifcation	Early, self-contained, higher-precision-per- object analysis	Training SN model, measuring any SN- population/extinction drift	

Prism Parameters

- The prism spans 0.75 μ m to 1.8 μ m with $R_{2 \text{ pixels}} \sim 100$.
- The prism dispersion is much lower than the grism, so higher continuum sensitivity.

Prism Parameters

- The point-source sensitivity in one hour is about AB 23.8!
- As we have seen, the deep tier of the HLTDS has ~10 one-hour visits per SN in a time series.

S/N in the Prism Timeseries

- A time-series analysis is key to extracting the smallest measurement uncertainties.
- This poses a problem for many current SN codes, which assume one spectrum (more time-series training data would also be useful here).

- Ignoring edge effects, scale these numbers down to the fraction of time the prism will have.
- 3D host-galaxy subtraction (Astraatmadja in prep. and Joshi in prep.) is important.
- Thousands of live-SN measurements!

- The prism is background limited, so broader wavelength coverage trades greater spectral range for lower S/N.
- Higher spectral dispersion also trades against lower S/N, but results in lower systematic uncertainties from, e.g., imprecise line-spread function knowledge.
- We need a pixel-level forward-model code to investigate these trades. Exposure-time calculations are not good enough!

Prism Parameter Optimization

TELESCOPE

Minimum Dispersion

 Imposing an inaccurate line-spread function (by 5%) causes a bias (evaluated here with SNEMO15, Saunders+ 2018) which rapidly drops with dispersion.

SN Redshifts

- Simulate by resampling real SN time series, fit with SALT2-Extended template.
- Redshift recovery above redshift 2!
- (The plateau at low redshift is due to a peculiar SN in the training set that is not well fit by SALT2.)

SN Subclassifcation

• The prism is capable of interesting subclassifcation measurements above redshift 1.

SED Model Training

- 100 z ~ 1 SNe observed with the prism using onehour-per-visit epochs.
- Good recovery of unknown SNEMO15 (Saunders+ 2018) eigenvector to within a few percent of the population RMS (the statistical uncertainty is ~ 1/sqrt(100) = 0.1).

ROMAN Prism/Imaging Trade at Fixed Total Time

 The details change with redshift (this is redshift 1.1), but using the prism ~ a fraction of the time generally lowers uncertainties (and never significantly raises them).

Survey Optimization

V S/N Target	HD RMS (Mag)	Wide Tier	Deep Tier	Statisical-Only FoM
25	0.15	$5.2 \ \text{deg}^2, \ 581.95 \ \text{s}$	$1.3 \ 3178.12$	214
25	0.10	$5.6 \ \mathrm{deg}^2, \ 477.43 \ \mathrm{s}$	$1.3 \ 3178.12$	362
35	0.10	$4.8 \ \mathrm{deg}^2, 666.70 \ \mathrm{s}$	$0.7 \ 6011.60$	275
35	0.075	$5.4 \ \text{deg}^2, \ 519.80 \ \text{s}$	$0.7 \ 6011.60$	381

- Here, all four surveys have been optimized assuming 25% prism time.
- The optimal prism survey is not very sensitive to assumptions!
- Statistical-only FoMs of 200—400 are possible using just prismobserved SNe!

Conclusions

- The prism is useful for obtaining SN redshifts, SN classifications, and SN subclassifications. The optimal tiers and exposure times for doing this do not vary much with assumptions!
- SNe observed in the prism provide a reasonably high FoM, 200-400 statistical, even without SNe observed in only imaging.
- The prism data allows one to find an "unknown unknown" in the spectral energy distributions of high redshift SNe.
- Possibly the prism should have ~ a fraction of the total time, but this needs better optimization using SED models with wide restframe wavelength coverage.
- Prism SN yields (above a given S/N cut) are 50% 100% higher if 3D host subtraction can be used.