Image Credit: NASA/JPL-Caltech/O. Krause (Steward Observatory)

REVEALING CORE-COLLAPSE SUPERNOVAE AND FAILED EXPLOSIONS WITH *ROMAN*

Jacob Jencson Postdoctoral Associate, Steward Observatory Tucson, AZ Exploring the Transient Universe with Roman IPAC/Caltech Pasadena, CA

February 8, 2022

The infrared sky is brimming with massive star fireworks.

SPitzer InfraRed Intensive Transients Survey:

A targeted search of nearby galaxies for transients in the mid-IR (PI M. Kasliwal, Project scientist **J. Jencson**).

Discovered numerous transients from massive stars, some with no detectable optical emission.

The infrared sky is brimming with massive star fireworks.

Impostors

(e.g., Jencson+ 2019ab,

Andrews+ 2021)

Stellar Mergers (e.g., Smith+ 2016, Blagorodnova+ 2017, 2021, Jencson+ 2019b)

4490-0T IRAC Band 2 4490-OT KAIT unfiltered -10SN 1954J (M. N4490-07 progenito N4490-0T HST F814W + 1.3 -2434 IRAC 1/2 V838 Mor **V838** Mon (V) early/mid B V star) B = 1.1 V1309 Sco B-1.1 I+1.3 (OGLE) -400-2000 200 400 600 800 Days (arbitrary shift)

Dusty SNe lax and dustfree SNe la (Fox+ 2016, Johansson+ 2017) **SPIRITS ADS Library:** https://ui.adsabs.harvard.edu/ public-libraries/ OLBleuZdS0euKOhQJpMUfA

Extremely luminous and long-period variables (Karambelkar+ 19)

Dust-forming

massive binaries

(e.g., Lau+ 2021)

February 8, 2022

Infrared emission probes the circumstellar environments of supernovae:

(e.g.,Tinyanont+ 2021)

in Tinyanont+ 2016)

How do we build a complete census of massive stellar death?

I. Where are the missing core-collapse supernovae?

II. Do all massive stars explode?

How do we build a complete census of massive stellar death?

I.Where are the missing core-collapse supernovae?

II. Do all massive stars explode?

Many core-collapse supernovae may be heavily obscured.

SN 2015cb in IRAS 17138-1017 with GeMS/GSAOI

Numerous searches of starbursts and (U)LIRGS:

- Near with HST or AO (e.g., Mattila+ 2007, 2008, Kankare+ 2008, 2012, Kool+ 2018)
- Radio VLBI (e.g., Perez-Torres+ 2009, Romero-Cañizales+ 2012)
- Mid-IR with Spitzer (Fox+ 2021)

How do we build a complete census of massive stellar death?

I. Where are the missing core-collapse supernovae?

II. Do all massive stars explode?

Connecting supernovae to their progenitors: Direct searches in archival imaging

Search for coincident sources in high-resolution (often HST) pre-explosion imaging

Ideally, the star's disappearance is confirmed in post-explosion imaging.

February 8, 2022

В

Do all massive stars explode?

Data from IIP progenitors favors an an upper mass limit $\sim 16-23 M_{\odot}$ (Smartt 2009, 2015, Davies & Beasor 2018, 2020ab, Kochanek 2020).

Significance of missing higher mass stars remains low with current sample.

Core structure may determine outcome (e.g., Pejcha & Thompson 2014, Ertl 2016, Sukhbold, Woosley & Heger 2018, Ebinger+ 2020, Ghosh+ 2021).

Some consensus that $>20 M_{\odot}$ stars are harder to explode.

"Islands of Explodability"

Jacob Jencson

Black hole formation may have associated transients.

No such events found in stacked iPTF/ZTF images, but may be accessible with Rubin (Byrne & Fraser 2022).

N6946-BHI: a disappearing ~25 M_☉ star from the LBT

Prior search with **archival-only** HST: One YSG candidate, not confirmed (Reynolds+ 2015).

Jacob Jencson

February 8, 2022

A New Search For Failed Supernovae with HST -12

Observed a sample of 31 prolific SN-producing galaxies in 2019 ΣĪ (cycle 26; PI D. Sand)

All galaxies at least 2 epochs of prior F814W imaging, many with extensive archival coverage

Extended time baselines with new data is key

Expect ~5-10 in our dataset

In collab, with D. Sand, J. Andrews, N. Smith, J. Strader, S. Valenti, J. Pearson, E. Beasor, B. Rothberg

February 8, 2022

Image credit: NASA

Discovery of a "disappearing" star in M51

M5I-DSI (= "Dimming Star" I)

Jencson+ 2021 (arXiv:2110.11376)

Discovery of a "disappearing" star in M51

M5I-DSI (= "Dimming Star" I)

Jencson+ 2021 (arXiv:2110.11376)

Photometry points to a, massive cool supergiant variable.

An even "Greater" Dimming M51-DS1 as an episodic mass-loss event

February 8, 2022

15/17

An even "Greater" Dimming M51-DS1 as an episodic mass-loss event

Finding Failed Supernovae with Roman

Less hampered by extinction

Many nearby galaxies can be fully mapped without tiling

Growing coverage with WFC3/IR as a baseline for first-pass *Roman* imaging.

Five-year *Roman* survey of 30 galaxies could find ~3-6 failed SNe (7-14 total with WFC3/IR).

Summary

The infrared sky is remarkably dynamic!

- Spitzer uncovered a host of infrared transients and variables of diverse origins.
- Huge discovery space to explore with Roman.

Roman will be a powerful tool to build a complete census of massive stellar death:

- Continue the search for heavily obscured supernovae.
- Build on ongoing work with the LBT and HST to uncover failed supernova explosions.

Auxiliary Slides

Collection of directly detected progenitors is growing:

Is there evidence for missing high-mass progenitors?

Data favors an an upper mass limit ~16-23 M_☉ (Davies & Beasor 2018, 2020ab, Kochanek 2020)

Significance of missing higher mass stars remains low with current sample (Davies & Beasor 2018, 2020ab)

Which stars should explode?

E(B-V)

 $25 M_{\odot}$

2016 - 2017

 $> 20 M_{\odot}$

 $-15 M_{\odot}$

 $2021 \ 10 \ M_{\odot}$

 $12 M_{\odot}$

 $8 M_{\odot}$

2019

1.6

1.3

0.8 0.4

0.0

Summary and Conclusions

We are conducting a new search with HST to determine the rate and progenitors of failed supernovae.

Our first candidate is a very massive (>20 M_{\odot}), yellow or red supergiant in M51 that underwent an exceptional dimming event in 2019.

Recovery of the star suggests a large mass-loss event (not a failed supernova) - possibly a more extreme version of the ''Great Dimming'' of Betelgeuse.

These events may be common in cool supergiants.

Data analysis for failed supernova search is ongoing, especially for longest baselines.