Microlensing with the Roman Galactic Bulge Time Domain Survey a Detector Simulation

Exploring the Transient Universe with the the Nancy Grace Roman Space Telescope February 8th-10th 2022, Caltech/IPAC

S. Calchi Novati, Caltech/IPAC

Layout

- □ Microlensing with the Roman Galactic Bulge Time Domain Survey
- □ Roman Science Support Center (SSC) at IPAC
 - ✓ Microlensing Science Operation System (MSOS)

□ A detector simulation

- $\checkmark~$ Purpose of the simulation
- \checkmark Toolbox for the image and star simulation
- $\checkmark~$ The Simulated Bulge scene
- $\checkmark~$ Recipe for the simulation
- ✓ Noise, Sky, Crowding
- ✓ Jitter simulation
- ✓ Persistence simulation
- ✓ Simulation for microlensing events
- Acknowledgements: S. Carey (Calecth/IPAC), M. Penny (LSU) for the microSIT (PI: S. Gaudi, OSU)

□ MSOS photometry pipeline: prototype analyses

Summary: Moving Forward

Microlensing with the Roman Galactic Bulge Time Domain Survey

Notional Survey Observational Strategy

- area of the survey: 2 square degree
- duration: 60-72days x 6 seasons along 5 years
- cadence: 15 minutes in primary Wide filter
- yield: ~3×10⁴ microlensing events and ~10³ bound exoplanets and bonus free floating planets
- data volume: ~40,000 epochs with Wide filter for ~ 10^8 monitored stars

Microlensing with the Roman Survey: a Detector Simulation February 8, 2022, S. Calchi Novati, Caltech/IPAC

Penny et al, 2019

Microlensing Science Operation System (MSOS) at the Science Support Center (SSC) at IPAC

High-level data flow

High-level Science flow

(lead: R. Akeson)

A detector simulation: Testbed for the MSOS pipeline at SSC/IPAC

framework: a primary goal of the image analysis for the microlensing survey consists in light curve photometry and astrometry for the ensemble of monitored stars (in a very crowded field with overall order of 200 million monitored stars) with expected over 40,000 epochs in the primary wide filter

- □ Impact on photometry and astrometry (in particular for planetary microlensing events)
 - ✤ Astrophysical effects
 - Underlying photon noise (from the astrophysical scene)
 - crowding
 - proper motion
 - PSF variations
 - • • • • • •
 - Detector/observatory effects
 - Detector/observatory noise (read out, thermal,...)
 - Jitter
 - Sampling-up the ramp
 - Intrapixel sensitivity variations
 - Classical non-linearitities
 - IPC
 - Brighter Fatter Effect
 - Persistence
 - PSF variations
 -

Toolbox for the simulation

image and star simulation

- □ Astrophysical scene, crowded star fields toward the Bulge : star density, luminosity function, star proper motion from GULLS (M. Penny et al 2019)
- Microlensing Population: relative proper motion, source/lens brightness, microlensing parameters (M. Penny et al , 2019)
- □ Instrument and observatory models and noise specification from GULLS (M. Penny et al, 2019) and various sources related to the Roman project
- □ PSF model from WebbPSF (Perrin, Long et al @ STScI)
- Image, star simulation and test photometry model based upon prior analyses on Spitzer/IRAC data (SCN et al, 2015) – underlying strategy similar to ePSF analysis (Anderson and King, 2000)
- □ Microlensing Magnification with VBBinaryLensing (Bozza 2010, Bozza et al 2018)

The simulated Bulge Scene

Recipe for the simulation

- Input an oversampled PSF (typical oversample values over = 5 or 9, from WebbPSF), and here we have two possible paths to get to simulate point-like sources (stars) with arbitrary pixel phases (extended sources are not simulated)
 - build over x over effective PSFs and carry out the simulation at the pixel level (conceptually similar to Anderson and King 2000 ePSF framework, one difference is that we use bilinear interpolation)
 - carry out the simulation at the sub-pixel level (which in particular easily allows for the introduction of intrapixel sensitivity effects) and resample at the end
- Generalization: simultaneous analysis with different PSFs to account for different star spectral types and PSF variations across the field of view (WebbPSF provides a variety of PSF for different spectral types and PSF model across the full WFI field of view)
- □ Simulation of the background: detector plus sky, with corresponding noise (input instrument and noise specifications)
- □ Loop over the star catalog (input astrophysical scene) and simulate stars with corresponding (Poisson) noise
- □ Wrap up including read out noise
- Optional: include additional detector/observatory effects beyond ideal noise realization (input observatory and detector model)
- **Output:**
 - images and corresponding uncertainty maps
 - (optional): (test) photometry an astrometry for simulated stars

Noise, Sky, Crowding.....

Jitter Simulation

- description: high-frequency oscillations of the observatory modeled summing up (for each exposure) several sub-exposures each slightly offset versus previous one
- key parameters: frequency and model for the offset
- fiducial model: combination of two modes (Spergel et al 2015, Bellini et al 2017, Stoneking et al 2017)
 - gaussian offset from the nominal position, to simulate "Fine Guiding System", with sigma=4.4 mas and nu=6 Hz
 - \circ higher frequency random walk, sigma=14mas, nu=12-18 Hz

jittered image (with centroid offset and broadening of the PSF) and residual vs fiducial one

Astrometry and photometry stability analysis along a light curve (carried out with the same underlying PSF)

Persistence Simulation

- description: ghost image of earlier exposures (related to traps in the detector out of which charges previously accumulated are, along time, slowly released even after the end of a given exposure); a strongly non-linear effect relevant especially for very bright/saturated stars; modeled building a persistence "signal" map from stars from previously exposed images and adding it to the science exposure (caveats: the model does not include intrinsic patchy nature of the effect; self-persistence, namely the effect within the same exposure; a noise model for the persistence)
- key parameters: decay time; amplitude and threshold value (about full well depth) for the effect
- fiducial model: empirical parametric model by Long et al (2012) for WFC3-IR; internal note from the Roman project (Kruk, 2020)
- note: laboratory data show the effect is expected to be significantly smaller for Roman/WFI than in HST_WFC3-IR

excess scatter introduced by persistence vs fiducial case

Persistence Simulation

Simulation for Microlensing Events

Roman: first simultaneous microlensing and high resolution imaging lens flux analysis survey

lens and source parallax and proper motion

a microlensing planetary light curve

MSOS photometry pipeline at IPAC: prototype analyses

based upon codes developed by Jay Anderson (within the microSIT)

- 1. a simulated image
- stacked reference (750 images, 8x oversampling)
- 3. residual image versus recovered star catalog

Summary: moving forward

□ keep detector simulation updated

- ✓ versus Galactic model
- \checkmark versus understanding of the Roman/WFI detector
- □ devise tailored calibration and analysis strategies for the survey
- □ integrate with additional simulation products/tools
- □ end-to-end processing for MSOS pipeline at SSC