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Multi-messenger astronomy defined
LIGO/Virgo

Swift

IceCube

• Multiple types of emission from a 
single astrophysical source

• Gravitational waves (GW)

• Electromagnetic radiation (EM) 
• Neutrinos


• Focus today: binary neutron star 
and neutron star-black hole 
mergers

Optical facilities



Compact object mergers overlap 
with many important questions
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final orbits: 
strong GW 

source

ejecta: some 
material 

escapes; some 
is bound 

final: a central 
NS or BH, an 

accretion disk,

unbound ejecta

merger: neutron 
star disrupts, 

central remnant 
forms

Compact object mergers are a 
stellar danse macabre



The r-process produces ~half of 
elements heavier than Fe

Big Bang
Cosmic Rays

s-process (AGBs)

SNe Ia

CCSNe

 synthetic

the r-process

n p e-free  
neutrons

requires ⌧n ⌧ ⌧��

“rapid”:



More neutrons

M
or

e 
pr

ot
on

s

courtesy J. Lippuner

� -decay

The r-process produces ~half of 
elements heavier than Fe



More neutrons

M
or

e 
pr

ot
on

s

courtesy J. Lippuner

� -decay

The r-process produces ~half of 
elements heavier than Fe



tidally 

stripped

dynamically 

squeezed

disk 

outflows

• Mildly relativistic neutron-
rich unbound material


• Synthesis of heavy elements

The decay of synthesized elements 
powers a “kilonova”

“kilonova”

An expanding cloud heated 
by radioactive decays
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Lessons Learned
• Confirmed NS mergers as 

progenitors of short 
gamma-ray bursts


• Identified NS mergers as 
sites of r-process 
nucleosynthesis



ns-ns

ns-bh tidal shredding accretion disk  
outflow

dynamical  
“squeezing” (ns central  

remnant)

0 < ⌧NS < 1

A clearer picture of the ejecta is 
crucial for progress 
How much mass was ejected, at what velocity, and with what 
composition?



Lippuner & Roberts 2015
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Lippuner & Roberts 2015

Fe-group
elements

light 
r-process

heavy 
r-process

fewer free n per seed more free n per seed

Ye =
p

p+ n

more weak interactionsfewer weak interactions

Interpreting the GW170817 kilonova 
Outcomes of the r-process



Kilonova opacities depend on 
composition/nucleosynthesis

Kasen, Badnell, & JB 2013
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Iron (SNe)

r-process



p-shell  
(6 e-)

f-shell (14 e-)

s-shell  
(2 e-)

Lanthanides

Actinides

SNe

mergers

Nlines ⇡ N2
lev

Nlev ⇡ g!

n!(g � n)!

n =
g = 2(2l + 1)

no. of electrons

d-shell  
(10 e-)

some 
mergers

Opacity is correlated with atomic structure

Kilonova opacities depend on 
composition/nucleosynthesis



Nicholl+2017
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GW170817 showed evidence of multiple outflows with distinct 
patterns of nucleosynthesis

Age in days after 
GW170817

Kilonova opacities depends on 
composition/nucleosynthesis



Roman is a powerful tool for 
kilonova discovery
It is uniquely sensitivity in near infrared bands, allowing detections of 
kilonovae out to high redshifts

Chase+2021
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Survey mode: Roman 
could detect    16 
kilonovae at

(Scolnic+21)

≈
z ∼ 0.1 − 0.8



Roman is [could be] a powerful tool 
for gravitational-wave follow-up

• Sensitivity out to red 
wavelengths is 
increasingly important 
as advances on the 
GW side push the NS 
merger horizon to 
higher and higher 
redshifts

Roman

LSST-WFD

• Wide field of view (0.28 deg2, 100x Hubble’s) can 
efficiently search large GW sky localizations
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• Follow-up is not 
limited to photometry!


