## "Super-Kilonovae" as Signatures of Black-Hole Birth in the Pair-instability Mass Gap









#### Daniel M. Siegel

Perimeter Institute for Theoretical Physics University of Guelph, Ontario, Canada



Roman Time Domain Science Conference, Feb 9, 2022

Together with:

Aman Agarwal, Jennifer Barnes, Brian Metzger, Mathieu Renzo, Ashley Villar

Siegel+ 2022, arXiv:2111.03094

### Black holes in the pair-instability mass gap



#### Massive collapsars form BHs in the pair-instability mass gap



X (km)

#### Massive collapsars form BHs in the pair-instability mass gap



# Ejecta composition reflects accretion process in massive collapsars



- At high accretion rates, flow neutronizes Beloborodov 2003, Siegel & Metzger 2017, Siegel+ 2019
- Various nucleosynthesis regimes, see also Siegel, Barnes, Metzger 2019, Nature
- Ejecta contains high-opacity, lanthanide-rich material, X<sub>La</sub>~ 10<sup>-4</sup>–10<sup>-2</sup>

 $M_{ej} \sim 10-60 M_{sun}$ 

 $M_{ej, r-p} \sim I-20 M_{sun}$ 

 $M_{ej, Ni56} \sim 0.05 - I M_{sun}$ 

 $M_{BH} \sim 60 - 130 M_{sun}$ 



#### Super-Kilonovae



- representative models span a range of light curve morphologies
- r-process + <sup>56</sup>Ni powered transients on timescales ~tens of days ('scaled-up NS merger')
- red colors and distinctive spectra with and broad lines ( $v \sim 0.1c$ )

#### Super-Kilonovae detection prospects

- Targeted follow-up of very bright long GRBs in the IR with Roman, JWST
- Blind searches with Optical/IR surveys (Rubin/Roman)

| SuperKN Light Curve Models and Survey Detection Rates |               |              |               |               |                   |                      |                      |
|-------------------------------------------------------|---------------|--------------|---------------|---------------|-------------------|----------------------|----------------------|
| Model                                                 | $M_{\rm ej}$  | $v_{\rm ej}$ | $M_{ m Ni}$   | $M_{ m lrp}$  | $X_{\mathrm{La}}$ | $R_{ m Rubin}^{(a)}$ | $R^{(b)}_{ m Roman}$ |
|                                                       | $(M_{\odot})$ | (c)          | $(M_{\odot})$ | $(M_{\odot})$ | $(10^{-3})$       | $(\mathrm{yr}^{-1})$ | $(\mathrm{yr}^{-1})$ |
| a                                                     | 8.6           | 0.1          | 0.019         | 0.83          | 1.4               | 0.01                 | 0.02                 |
| b                                                     | 31.0          | 0.1          | 0.012         | 8.28          | 17.0              | 0.03                 | 0.4                  |
| С                                                     | 35.6          | 0.1          | 0.087         | 23.2          | 4.0               | 0.1                  | 2                    |
| d                                                     | 50.0          | 0.1          | 0.53          | 9.59          | 0.53              | 0.1                  | 4                    |
| е                                                     | 60.0          | 0.1          | 0.0           | 5.6           | 0.17              | 0.2                  | 0.01                 |
|                                                       |               |              |               |               |                   |                      |                      |

Rubin: sensitive to <sup>56</sup>Ni-rich, light rprocess models

Roman: sensitive to lanthanide-rich models

- scaled-up, beaming corrected GRB rate using Salpeter IMF, out to z = 0.1
- 10 deg<sup>2</sup> Roman WFI survey with filters F062, F158 and F184 to ~27th mag
- detection = at least 3 SNR>3 points

Uncertainties: intrinsic event rates, stellar structure, accretion dynamics & wind composition/mixing, ...

#### Super-Kilonovae detection prospects depend on survey strategy



need survey with a cadence of ~1–2 months for planned (realistic) depths of ~26–27 mag to detect several Super-Kilonovae per year

#### Super-Kilonovae are multimessenger events



- Gravitational instabilities in the accretion disk give rise to gravitational-wave emission observable with 3rd generation GW observatories (Cosmic Explorer, Einstein Telescope)
- GW frequency decreases as disk expands: distinctive "sad-trombone" GW signal

#### Conclusions

- Roman may be able to detect "Super-Kilonovae" and thus witness the birth of BHs in the PISN mass gap
- Roman to observe/constrain the fate of massive stars and extreme r-process nucleosynthesis events
- Roman WFI la survey to detect I-20 Super-KNe over 5 yr
- If mission lifetime long enough (~10 yrs), likely to overlap with ET & CE to detect multimessenger GW—SuperKNe events

