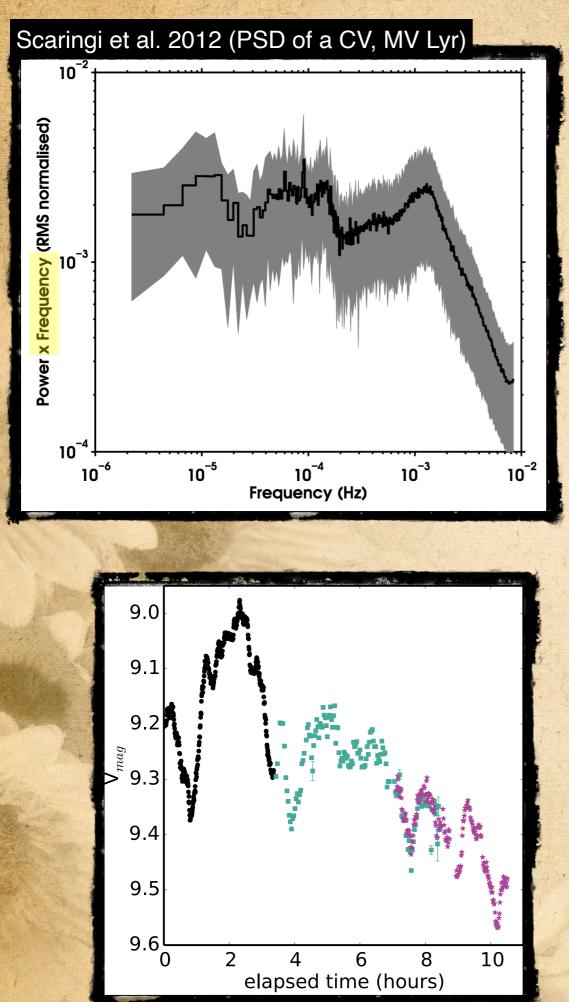
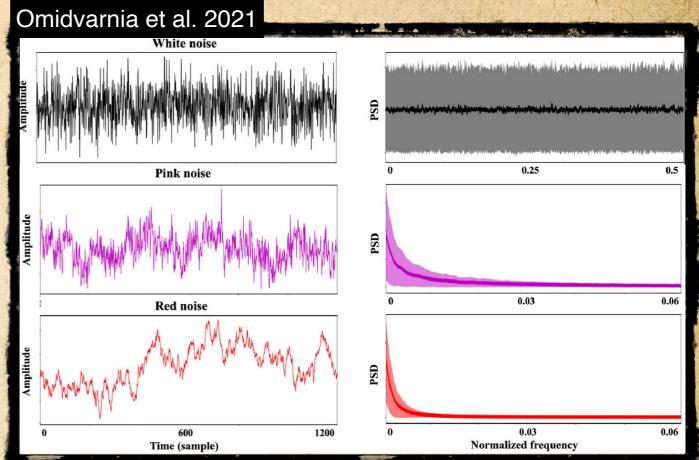
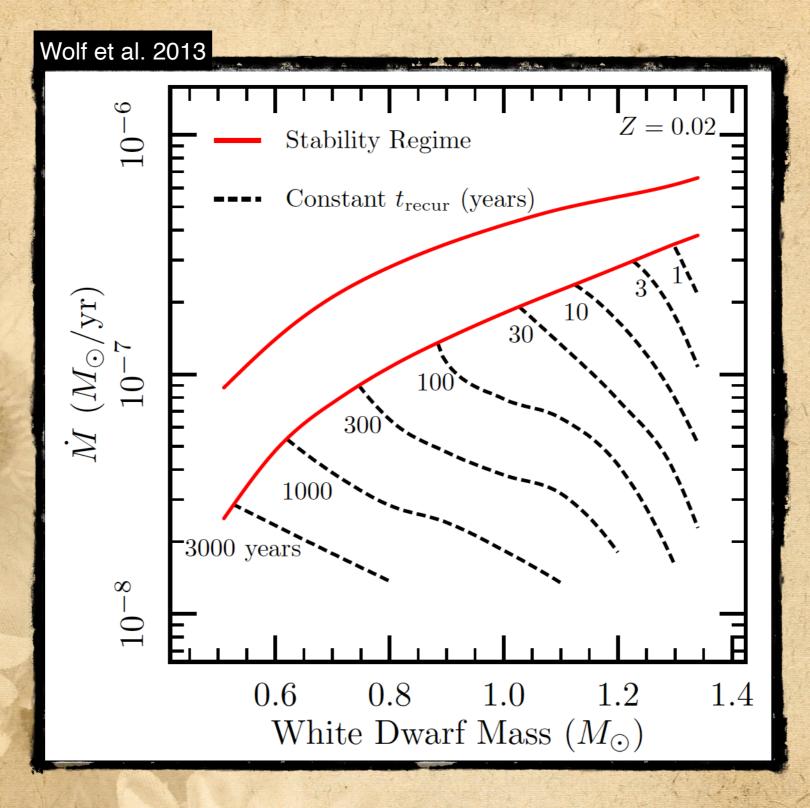

archival data retrieval and analysis in the time domain (& accreting-only symbiotic binaries)


Adrian B. Lucy, STScI Fellow, Space Telescope Science Institute

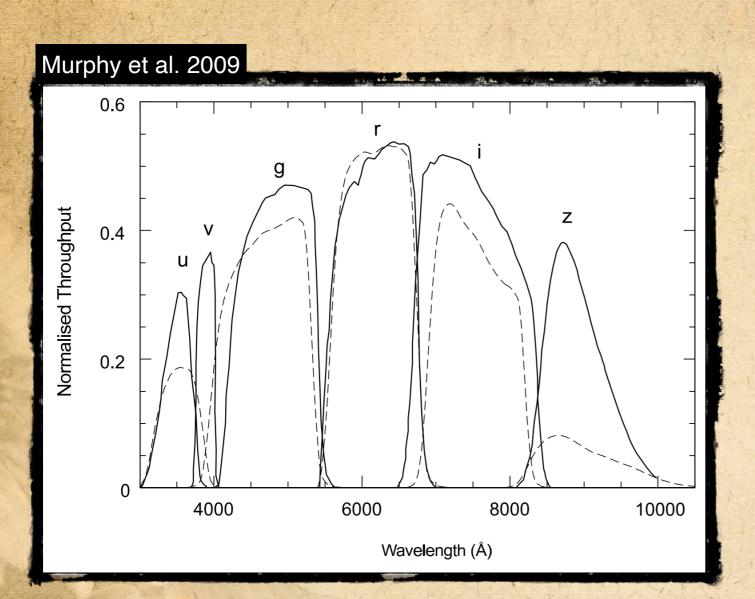
symbiotic binaries

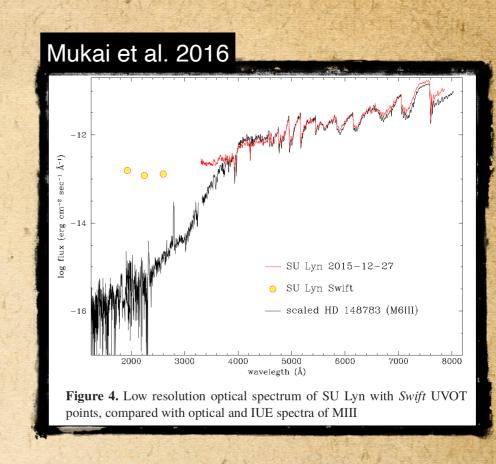


BHL wind accretion, Roche lobe overflow, or a hybrid (Mohamed & Pod. 2007) accreting white dwarf (often shell burning), or rarely an accreting neutron star, or in principle an accreting black hole (e.g., ULXs), or controversially an accreting main sequence star


Accretion disk flickering

Uttley et al. 2001, 2005; Scaringi et al. 2014, etc.


obscuration mechanisms:1. shell burning is too luminous2. cool giant is too luminous3. no accretion disk


burning vs. accreting only

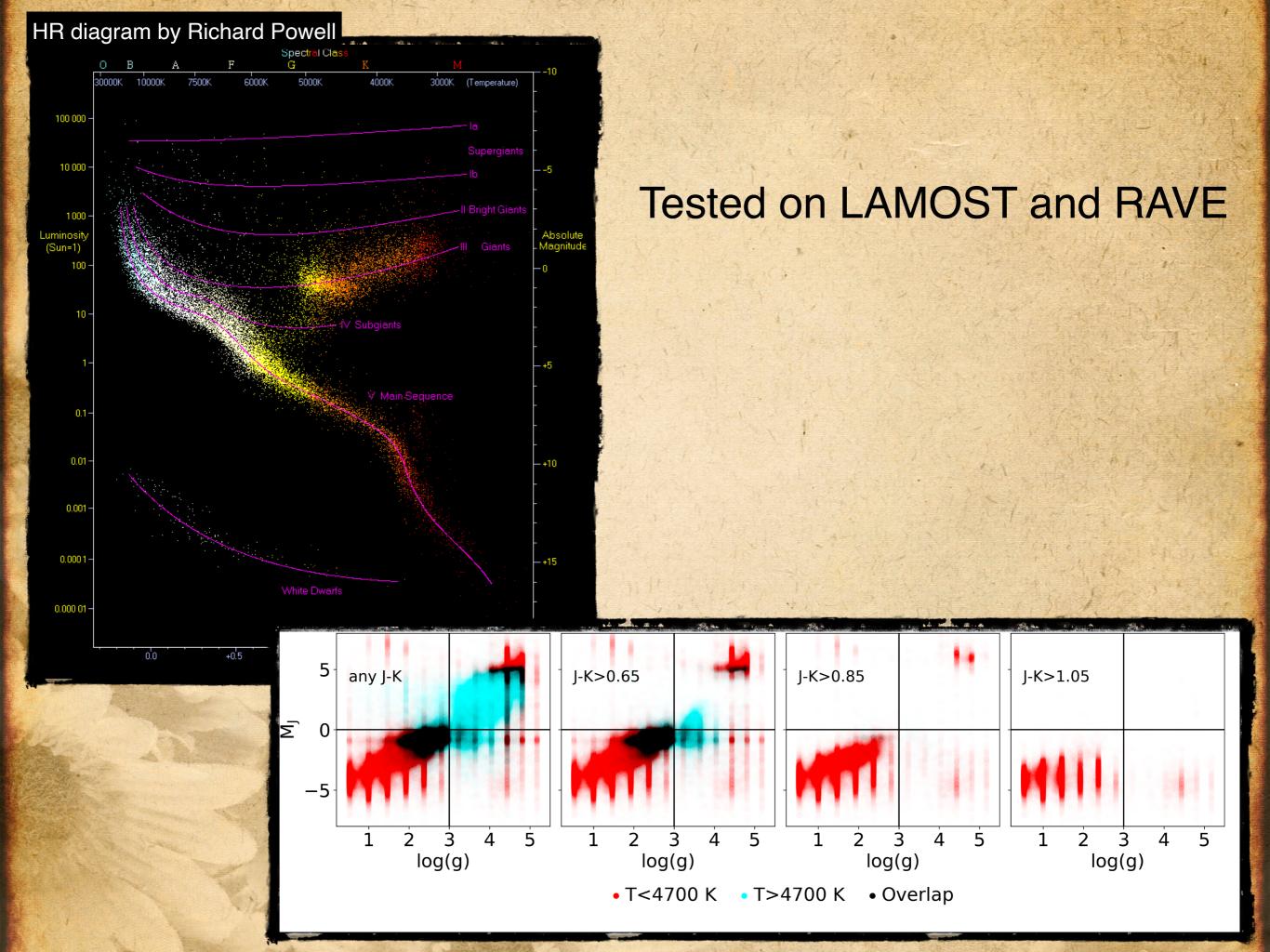
accreting-only status before 2021:

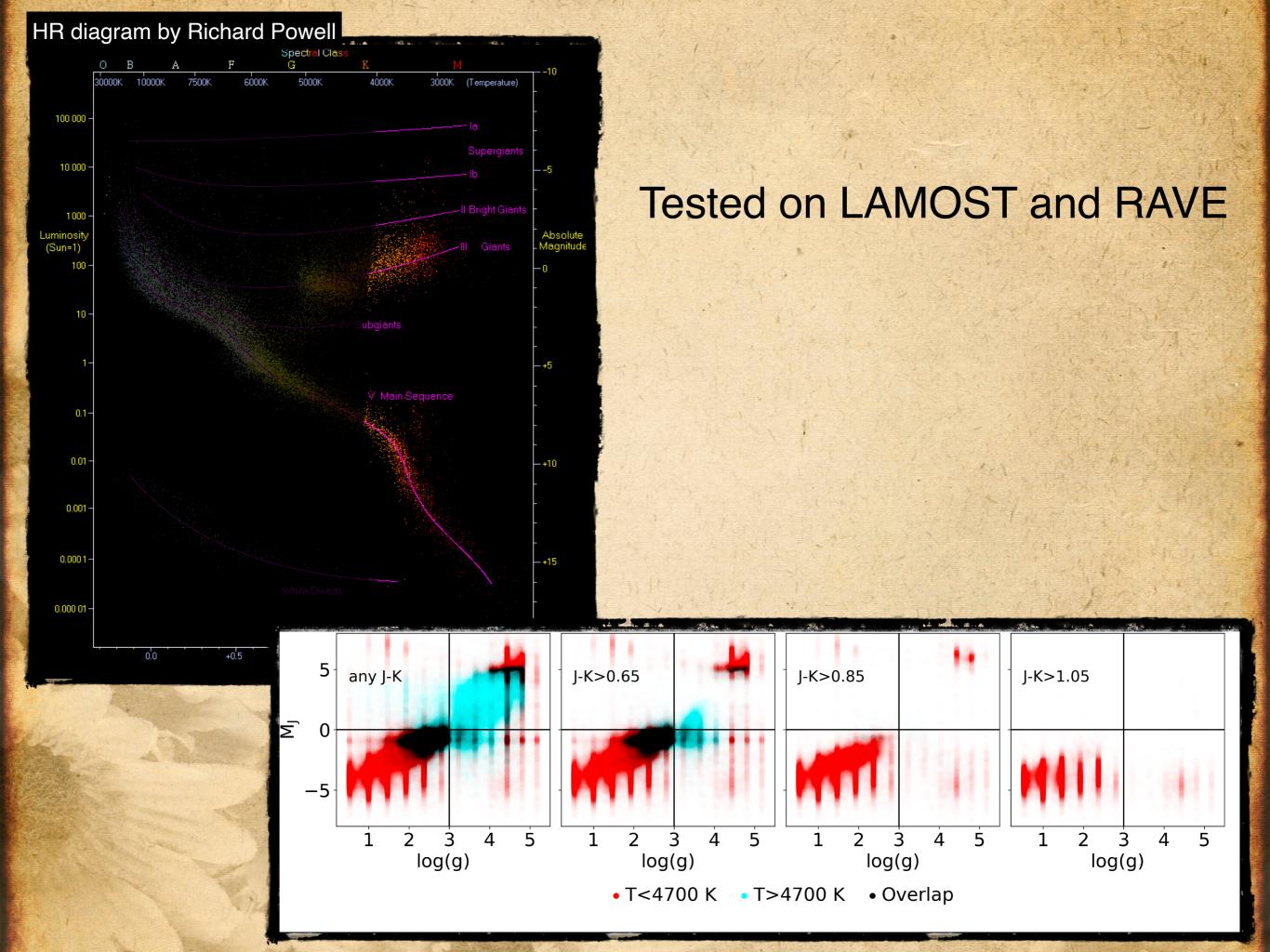
only 10 or 11 optical flickerers, up to maybe another 10 UV flickerers, and 23 (overlapping with flickerers, and 9 are neutron star accretors) hard X-ray emitters

The SkyMapper Southern Sky Survey (Main Survey, DR2)

8 min <u>8 min</u> u v g r u v i z u v 20 min

building a sample of luminous red objects


 $(J-K_s)_0 > 0.85$ $M_J < 0$ J < 14.0No other SkyMapper source within 6 arcsec


SkyMapper u_ngood > 0, v_ngood > 0, g_ngood > 0 2MASS AAA data quality Converged Bailer-Jones et al. (2018) distance exists

SkyMapper class_star > 0.9, flags_psf = 0, nch_max = 1 2MASS gal_contam = 0, ext_key = 0, cc_flg = '000', ext_key = 0

2 arcsec crossmatch to 2MASS and Gaia 3 arcsec crossmatch to ALLWISE

And sufficient data to reconstruct \geq 1 nightly color snapshot from individual measurements with SkyMapper used_in_clip = True or False, but not null.

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd

dr2.master m

JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key
JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

ext.allwise w ON m.allwise_cntr=w.cntr WHERE

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */</pre> AND m.gaia_dr2_dist1 < 2.0 AND m.allwise_dist < 3.0 AND m.prox > 6.0AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL AND t.cc_flg = '000'AND m.class star > 0.9 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.q_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */

ADQL query in TOPCAT

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd FROM dr2.master m

JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key
JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

ext.allwise w ON m.allwise_cntr=w.cntr

Pre-matched (but no pre-match for Bailer-Jones Bayesian distances)

WHERE

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */</pre> AND m.gaia_dr2_dist1 < 2.0 AND m.allwise_dist < 3.0 AND m.prox > 6.0AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL AND t.cc_flg = '000'AND m.class_star > 0.9 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.q_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd FROM

dr2.master m

JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

```
ext.allwise w ON m.allwise_cntr=w.cntr
WHERE
```

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */ AND m.gaia_dr2_dist1 < 2.0 chose larger of the two AND m.allwise_dist < 3.0 AND m.prox > 6.0AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL AND t.cc_flg = '000'AND m.class star > 0.9 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.q_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd FROM

dr2.master m

JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key
JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

ext.allwise w ON m.allwise_cntr=w.cntr WHERE

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */</pre> AND m.gaia_dr2_dist1 < 2.0 AND m.allwise_dist < 3.0 AND m.prox > 6.0 AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL constraint AND t.cc_flg = '000'AND m.class_star > 0.94 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.q_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */

tested first on symbiotics w/ with extended nebulae/jets, hence no 2mass prox constraint

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd FROM dr2.master m

arz. ma

JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key
JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

```
ext.allwise w ON m.allwise_cntr=w.cntr
WHERE
```

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */</pre> AND m.gaia_dr2_dist1 < 2.0 AND m.allwise_dist < 3.0 AND m.prox > 6.0AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL AND t.cc_flg = '000'AND m.class star > 0.9 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.g_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */

Asynchronous!

m.object_id, g.source_id, m.raj2000, m.dej2000, m.glon, m.glat, m.u_ngood, m.u_nclip, m.v_ngood, m.g_ngood, m.r_ngood, m.i_ngood, m.z_ngood, w.w1mpro, w.w1sigmpro, w.w2mpro, w.w2sigmpro, t.j_m, t.j_msigcom, t.h_m, t.h_msigcom, t.k_m, t.k_msigcom, m.u_psf, m.e_u_psf, m.v_psf, m.e_v_psf, m.g_psf, m.e_g_psf, m.r_psf, m.e_r_psf, m.i_psf, m.e_i_psf, m.z_psf, m.e_z_psf, m.prox, t.prox AS tprox, m.allwise_dist, g.parallax, g.parallax_error, g.astrometric_excess_noise, g.astrometric_excess_noise_sig, g.pmra, g.pmra_error, g.pmdec, g.pmdec_error, m.ebmv_sfd

dr2.master m

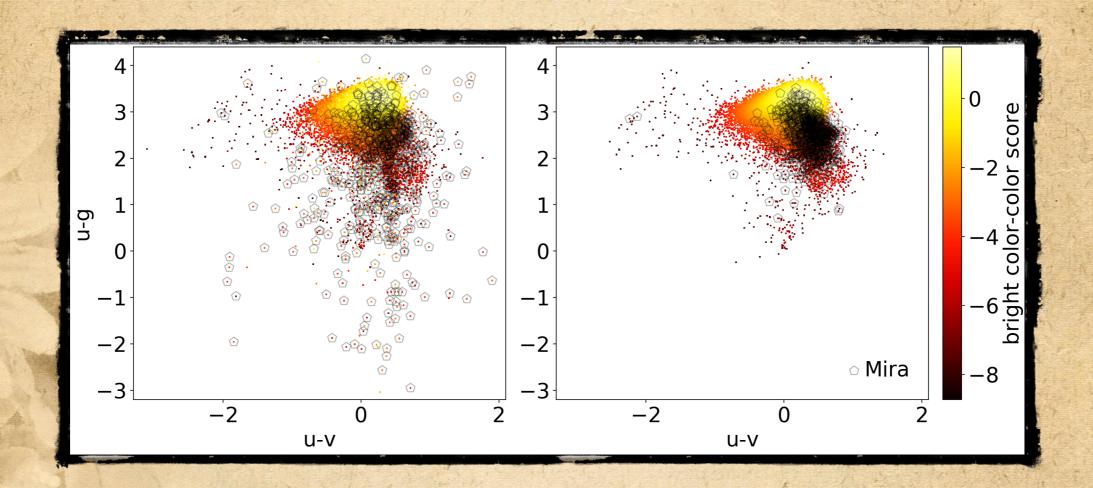
JOIN

ext.twomass_psc t ON m.twomass_key=t.pts_key
JOIN

ext.gaia_dr2 g ON m.gaia_dr2_id1=g.source_id JOIN

```
ext.allwise w ON m.allwise_cntr=w.cntr
WHERE
```

m.twomass_dist < 2.0 /* cross-matching radii (arcsec) */</pre> AND m.gaia_dr2_dist1 < 2.0 AND m.allwise_dist < 3.0 AND m.prox > 6.0AND t.ph_qual = 'AAA' /* quality cuts */ AND t.gal_contam = 0AND t.ext_key IS NULL AND t.cc_flg = '000'AND m.class star > 0.9 AND flags_psf = 0AND m.u_ngood > 0 AND $m.v_ngood > 0$ AND $m.g_ngood > 0$ AND $m.nch_max = 1$ AND (t.j_m - t.k_m) > 0.85 /* 2MASS initial color cut */ AND t.j_m < 14.0 /* Select for high 2MASS SNR */


No distance cut here

*TAP query: from [Bailer-Jones et al. 2018 catalog of Bayesian distances] join [local table] on [Gaia source ID from SkyMapper pre-match]

*with ARI-Gaia TAP endpoint, because it accepted table uploads up to 1 million rows (now 10 million)

*Sped up by retrieving only indexed columns *otherwise it timed out!

*only 13 out of 71 known symbiotics with *uvg* photometry were cut by the cuts described up until now

*need to get variability and recalculate colors from full photometry table of individual measurements

*don't want to retrieve individual measurements for millions of M dwarfs, so need to incorporate distances into selection

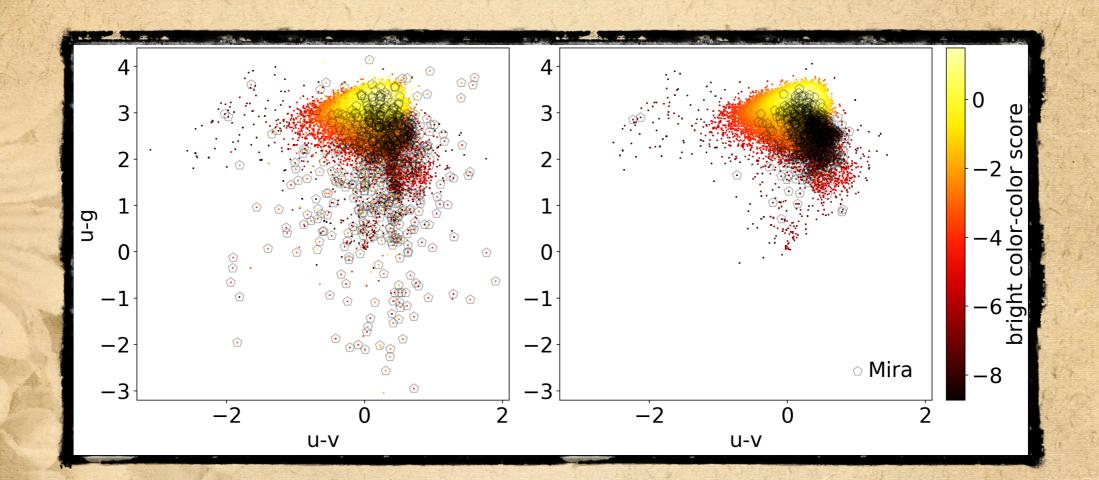
*SkyMapper didn't have Bailer-Jones distances in the schema

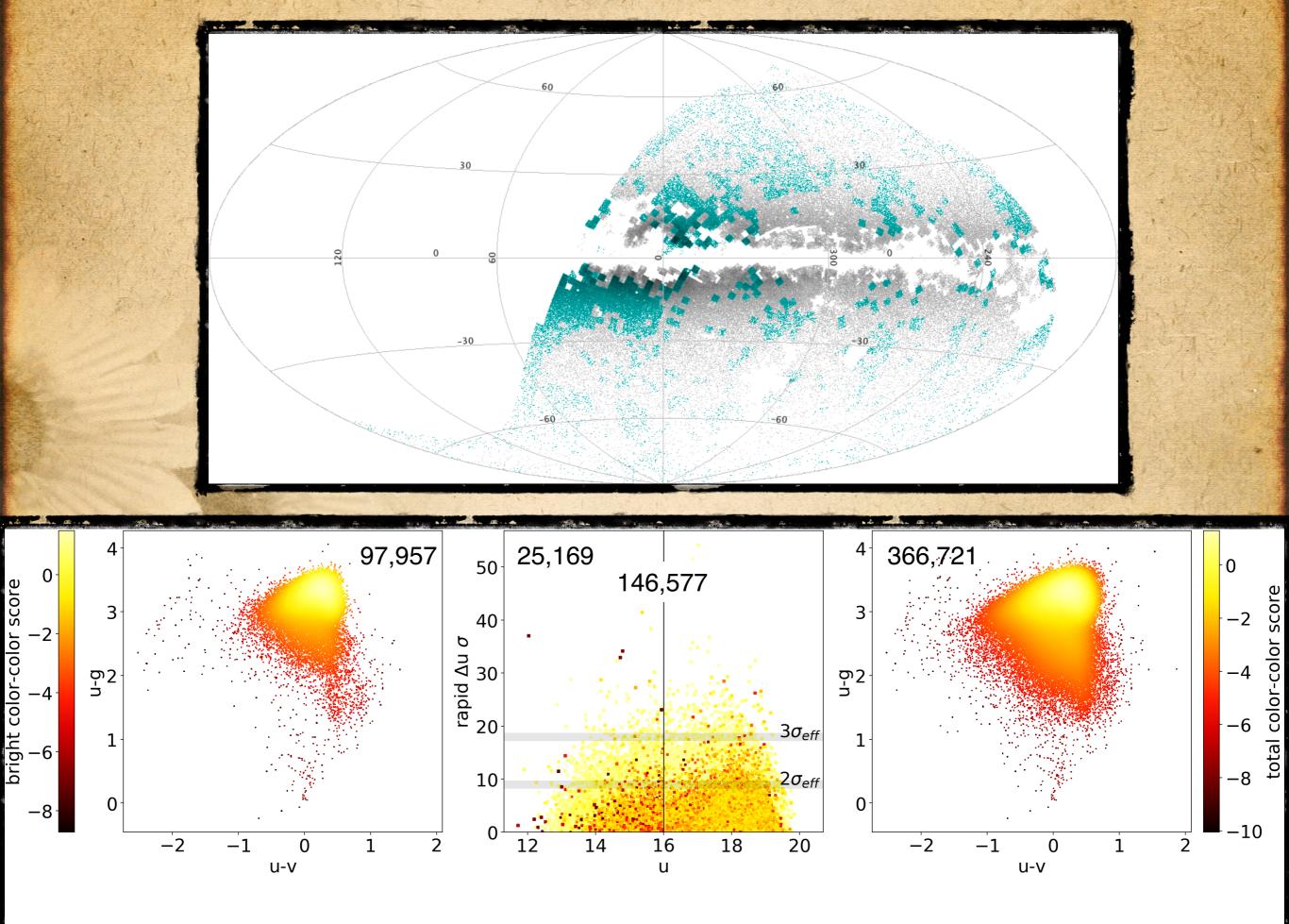
*SkyMapper TAP endpoint doesn't accept table uploads

*so, need a workaround...

*multiple cone search (Multicone) in TOPCAT, crossmatching our sample to the SkyMapper dr2.photometry TAP conesearch endpoint with a right outer join

*separated into pieces to avoid timing out the multicone query

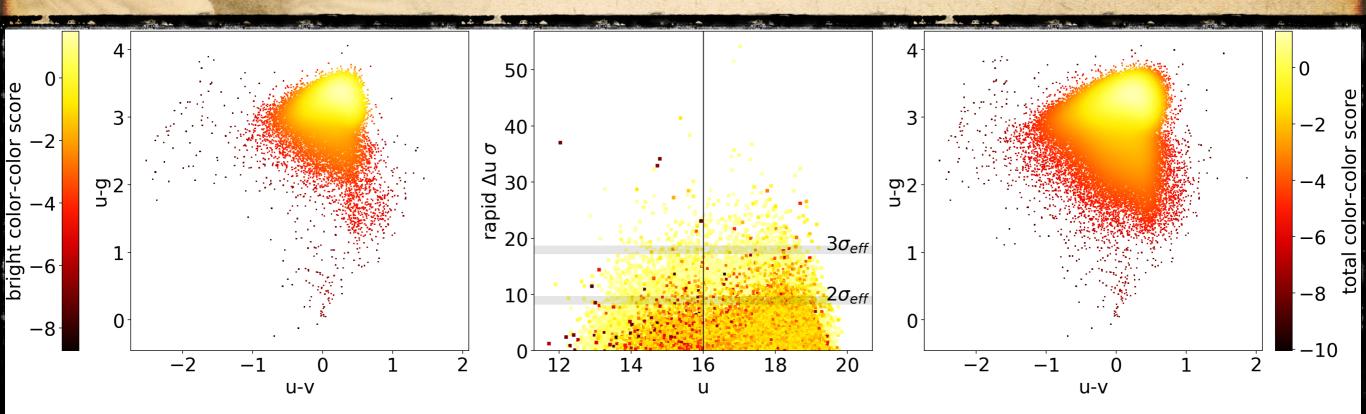

*downloaded full dr2.image table (needed date of observation)


Multiple Cone Search Pa	rameters —				
Cone Search URL: http:	s://skymapper.and	u.edu.au/sm	-cone/aus/query?		
Input Table: 2: my_ta	able	0			
RA column:	s_ra	\$	degrees	(J2000)	
Dec column:	s_dec	\$	degrees	(J2000)	
Search Radius column:	2	\$	arcsec	\bigcirc	
Verbosity: 3 (maximi	um) 🜔				
New jo	oined table with be	est matches			
Output Mode 🗸 New jo	oined table with all	matches			
	oined table, one ro	w per input	row		
Parallelism: Add su	ubset for matched	rows			
	Go	Sto	n		

*joined our full table of measurements (millions of rows)to the image table, locally in TOPCAT

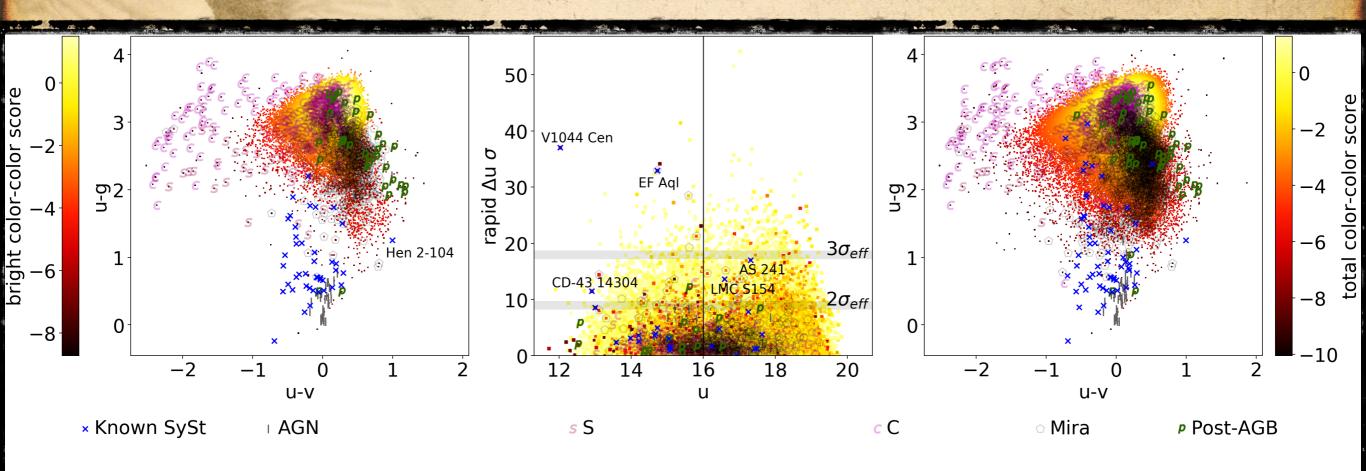
*+quality control cuts

*then computed, for each object, a weighted average of nightly u-v and u-g colors in pandas



rapid $\Delta u \sigma$ of an object is the maximum of

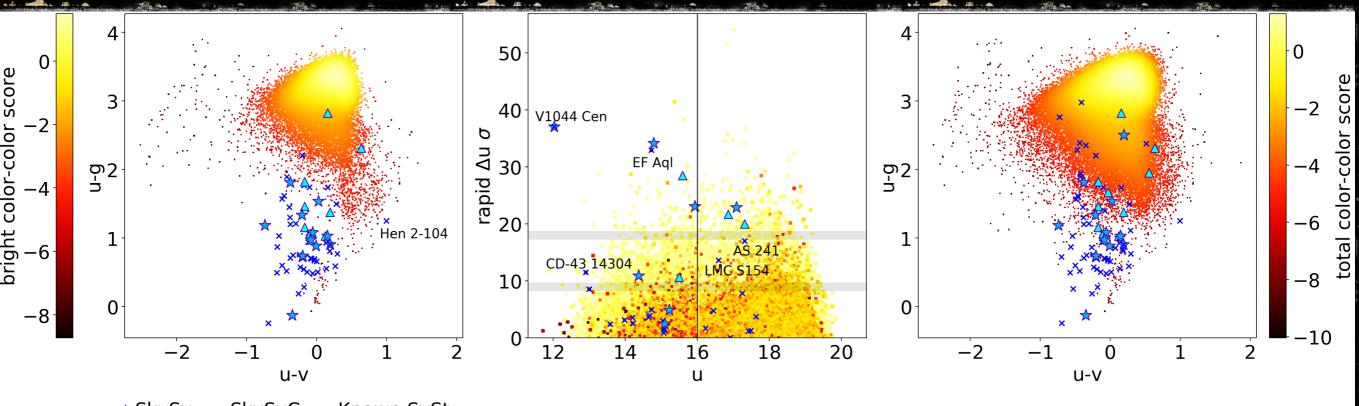
$$\frac{|u_i - u_j|}{\sqrt{(e_mag_psf)_i^2 + (e_mag_psf)_j^2}}$$


for i,j in exposures [u1,u2,u3] of a single Main Survey u1vgru2vizu3v

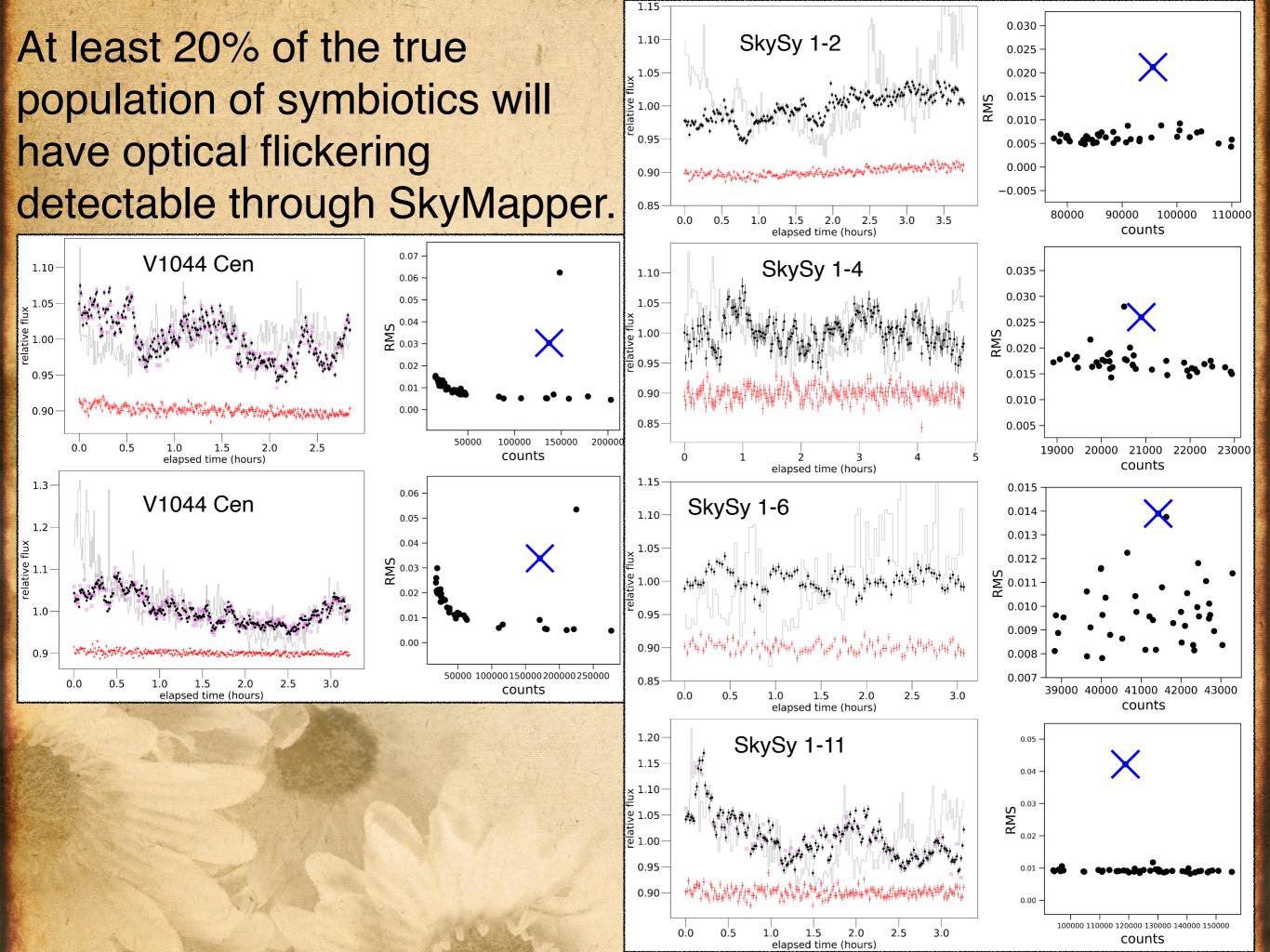
-> effective σ at 99.7%, 95.5%

CDS Upload X-Match
🛥 🛛 🗙
Remote Table
VizieR Table ID/Alias: simbad
Name: SIMBAD
Alias:
Description: SIMBAD Row Count: 12,833,301
Coverage: 1.0 (order 1)
L
Input Table:
RA column: 🗘 degrees ᅌ (J2000)
Dec column: 🗘 degrees ᅌ (J2000)
Match Parameters
Radius: 3 arcsec ᅌ
Find mode: Best
Rename columns: Duplicates ᅌ Suffix: _x
Block size: 50000 ≎ ◀ ►
Go Stop

SIMBAD crossmatch


12 confirmed symbiotics (SkyMapper Symbiotics = SkySy)
+ 10 candidates (SkyMapper Symbiotic Candidates = SkySyC)

SkySyC criteria:


- cool giant
- Balmer alpha flux > all higher order Balmer lines (after extinction correction)
- not an S/carbon star OR has He I (see Castelaz et al. 2000)

SkySy criteria:

- cool giant and AT LEAST ONE of the following:
- 1. emission from >35 eV ion (traditional)
- 2. extensively validated optical flickering
- 3. unambiguous X-ray photons above 2.4 keV

[★]SkySy ▲SkySyC × Known SySt

*What data do I need for my science to work?

*How many output rows do I expect? / how much data do I want to download? Can I split it easily into parts? Do I have the space for it? Does it need to be asynchronous?

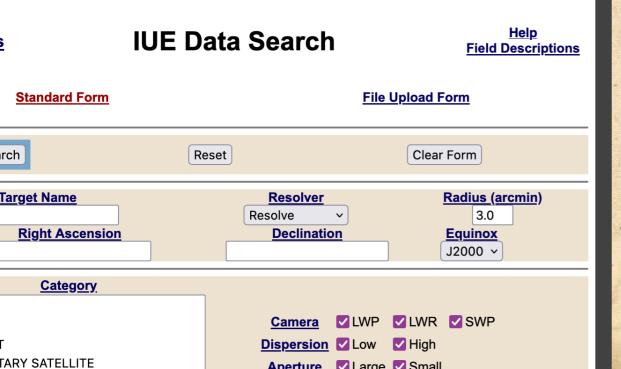
*What do the database schema look like? Which columns are indexed?

*Do I need to cross-match to external catalogs? What external data is already available in the schema or through the interface I'm using?

*Do I need/want to be able to cross-match to local tables (table uploads)?

*What is the email address of the archive's help desk?

The MAST ecosystem


*disclaimers

The MAST ecosystem: data exploration on browser

1. Portal (incl. VO): <u>https://</u> mast.stsci.edu/portal/Mashup/ Clients/Mast/Portal.html

me Page 🖌 MAST: MWC 560 👘																		AstroView
Total Rows												EM* MWC 560, radius: 0.3	:0000*	ă - E	16 🛣 🎬	Footprints: All	~ ~	<u> </u>
ers	📧 📃 List	View 📑 Album View																1.
er Filters Edit Filters Help	Edit Colu	umns Table Display: Al	~													Show Preview: 📃 Sh	ow Cutout: 📃	A
Keyword/Text Filter		Actions	Observation T.	Mission	Provenance Name	Instrument	Project	Filters	Waveband	Target Name	Target Classification	Observation ID	RA	Dec	Calibration Level	Start Time	Exposure Leng	
ter All Columns 🛛 🗶 🔎		1 📝 🚥	science	TESS	SPOC	Photometer	TESS	TESS	Optical	TESS FFI		tess-s0007-1-1	07:23:44.181	-02:07:46.02	3	2019-01-08 03:07:03	1425.599406	1
		2 📝 •••	science	TESS	SPOC	Photometer	TESS	TESS	Optical	TESS FFI		tess-s0034-1-1	07:50:30.627	-03:20:44.23	3	2021-01-14 06:06:36	475.19979	
Mission ame Quantity *	-	3 📝 …	science	TESS	SPOC	Photometer	TESS	TESS	Optical	TESS FF1		tess-s0034-2-4	07:38:14.384	-14:43:28.24	3	2021-01-14 06:05:50	475.19979	
HLSP (323 of 323)	-	4 📴 •••	science	SWIFT		UNOT		UVM2	UV	MWC560		00034392001	07:25:49.005	-07:42:12.67	2	2016-03-02 07:40:49		$ \rightarrow A $
IUE (126 of 126)															2			1.1
HST (65 of 65) SWIFT (49 of 49)		5 🔡 🚥	science	SWIFT		UVOT		UVW2	UV, OPTICAL	MWC560		00034392002	07:25:52.064	-07:44:37.85	2	2016-03-02 08:01:23	32.86992742	4
PS1 (25 of 25)		6 📝 …	science	SWIFT		UVOT		UGRISM	UV, OPTICAL	MWC560		00034392002	07:25:52.064	-07:44:37.85	2	2016-03-02 07:47:58	785.1860062	277
how 4 More		7 🔡 •••	science	SWIFT		UNOT		UVM2	UV	MWC560		00034392004	07:25:47.164	-07:45:16.87	2	2016-03-05 12:01:15	366.3628134	
Provenance Name		s 🔡 •••	science	SWIFT		UNOT		UGRISM	UV, OPTICAL	MWC560		00034392005	07:25:51.878	-07:43:54.80	2	2016-03-05 12:09:00	892.4719354	
me Quantity = DLP (296 of 296)		9 😭 ···	science	SWIFT		UVOT		UWV2	UV, OPTICAL	MWC560		00034392005	07:25:51.878	-07:43:54.80	2	2016-03-05 12:24:12	43.37047867	6
QLP (296 of 296) CALWF3 (34 of 34)	-	10 📝 …	science	SWIFT		UNOT		UVM2	UV	MWC560		00034392006	07:25:39.814	-07:44:11.40	2	2016-03-05 05:38:01	1122 466024	
3PI (25 of 25)		_																V .
TESS-SPOC (21 of 21)		11 🔡 •••	science	SWIFT		UVOT		UVM2	UV	MWC560		00034392009	07:25:40.433	-07:45:01.43	2	2016-03-08 20:05:55	215.5816759	
HAP (20 of 20)	•	12 📝 🚥	science	SWIFT		UNOT		UVM2	UV	MWC560		00034392013	07:25:44.911	-07:44:12.17	2	2016-03-09 05:19:57	723.89856255	
how 5 More	-	13 🔛 …	science	SWIFT		UNOT		UGRISM	UV. OPTICAL	MWC560		00034392014	07:25:51.885	-07:44:03.77	2	2016-03-09 12:00:18	307,76320980	
Instrument		14 🖼 …		SWIFT		UNOT			OPTICAL	MWC560		00034392015	07:25:51.073	-07:44:37.58		2016-03-09 11:54:48		

2. Mission search forms: https://archive.stsci.edu/ searches.html#missions

3. High Level Science Products

The MAST ecosystem: data exploration on browser **3. High Level Science Products** (Available in the portal too when possible)

High Level Science Products are observations, catalogs, or models that complement, or are derived from, MAST-supported missions. These include Hubble (HST), James Webb (JWST), TESS, PanSTARRS, Kepler/K2, GALEX, Swift, XMM, and others. HLSPs can include images, spectra, light curves, maps, source catalogs, or simulations. They can include observations from other telescopes, or data that have been processed in a way that differs from what's available in the originating archive. All HLSPs are public immediately with no proprietary periods. Use the filters below to discover HLSP. Search HLSP by coordinates or filenames on MAST Classic. Or, see all HLSPs in a simplified, searchable table.

Contribute HLSPs

HLSP filter	Keyword (HLSP, PI, etc.)	Object Type	Mission	▼ Product Type ▼ SUBMIT
Items per page: 15	▼ (190 total)			
	▲ First	Previous 1 2 3	3 4 5 Next ► L	ast >>
				Za DAST big background of the second
EX-9.M	AST			Search by Parameter Coordinates Object Select an HLSP. survey= CANDELS GOODS HFF-DEEPSPACE 3D-HST

SEARCH

Search by planet, object of interest or TESS TCE

View Table of Exoplanets

MOS | EGS | GOODS_North | GOODS_South | UDS

The MAST ecosystem: programatic interfaces

 Default: *astroquery.mast (<u>https://</u> <u>astroquery.readthedocs.io/en/latest/mast/mast.html</u>) -python

-extensive functionality, but can't access all metadata
 -output row limits for some things

The MAST ecosystem: programatic interfaces 2. Need more access to metadata? *MAST API, i.e. mashup API (https://mast.stsci.edu/api/ v0/, https://mast.stsci.edu/api/v0/ services.html) -more complex -output row limit of about 500,000 -access to more, but not all, metadata (e.g., for CAOM, https://mast.stsci.edu/api/v0/ <u>caomfields.html</u>) *http get (https://archive.stsci.edu/vo/ mast services.html#GET)

*CAOM TAP query (<u>https://vao.stsci.edu/caomtap/</u> querymanager.html)

- -all CAOM (cross-mission) metadata
- -VO-compatible
- -ADQL queries
- -large, async queries

The MAST ecosystem: programatic interfaces

3. Need to cross-match to other archives AND portal shows the data you need is available for VO service? Virtual Observatory TAP endpoints (<u>https://archive.stsci.edu/virtual-observatory</u>)

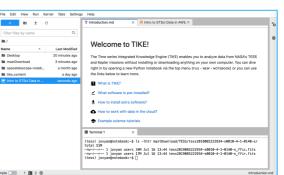
4. Very large/complex query, >10⁶ output rows, need to upload your own large table for crossmatch? Check if your data is available in CasJobs:

-SQL

-can handle larger, async queries -HLSPs, Kepler, TESS, 2MASS, PanSTARRS,

) M	AST (Query	y Casj	Jobs					
Home	Help	Tools	Query	History	MyDB	Import	Groups	Output	Profile	Queues
nlor_	47 IUC			ble (option	al) Task	Name				
HLSP_	_ASPIC			/Table	My Qu	uery				
HLSP_	ASPIC									
HLSP_	_ATLAS_R	EFCAT2								
HLSP_	GSWLC									
HLSP_	KG_RAD	II								

The MAST ecosystem: cloud interfaces


1. TIKE is a good approximation of the Roman science platform https://timeseries.science.stsci.edu/

The Timeseries Integrated Knowledge Engine (TIKE): cloud-based user interface for analysis of TESS mission data.

TIKE Science Platform

Coming in 2021! (stay tuned)

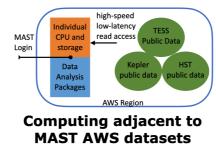
- Over 20 pre-installed community software packages
- Tutorials and example notebooks
- JupyterHub service in same region as MAST AWS Public Datasets: free, high bandwidth to TESS data

MAST AWS TESS data now free to transfer

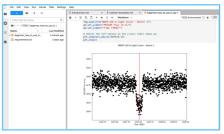
https://registry.opendata.aws/collab/stsci/

- MAST AWS data no longer uses "requestor pays"
- Astroquery (>= 0.4.2) and other clients no longer need AWS credentials
- High-throughput data access anywhere (cloud or not)

We can use astroquery.MAST to search and filter data products, return the S3 pa


For astroquery >= 0.4.2, no AWS account is a

Initial focus on timeseries analyses, e.g. TESS, Kepler


Pre-installed Python packages

- Core scientific packages: numpy, scipy, matplotlib, pandas.
- · Core astronomy packages: astropy, astroquery, pyvo.
- Data analysis packages: emcee, george, celerite.
- TESS- or Kepler-focused packages: lightkurve, astrocut, everest. · Machine learning: tensorflow, scikit-learn.
- Cloud tools: awscli, boto3, s3fs

STScI

Quickly visualize TESS & Kepler data

boto3 5m49s 23 Mbps 39x httpx 11m31s 12 Mbps 77x

httpx 14m05s 10 Mbps 94x

Access TESS data without transferring it over internet

dow envi	nload 30 TESS ronments. The t in time on Fe	Full Frame In se results are	nages (~	1 GB) in		
	Environment	Data location	Client	Time	Speed	Diff
	Environment TIKE platform	Data location	Client boto3	Time 9s	Speed 907 Mbps	Diff 1x

Greg Snyder

e.g. Scientist to support TESS archive (Aug 20, 2021) https://jobregister.aas.org/ad/144258c4

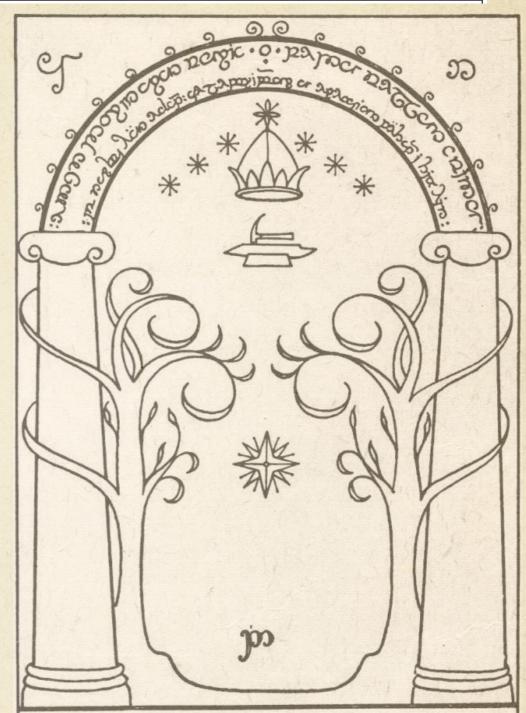
STScI is hiring!

-s0010-4-1-0140-s/tess2019005222934-s0010-4-1-0140-s_ffic.fit

Link to full STScI Job board

The MAST ecosystem: cloud interfaces

2. cloud data access APIs and cutout services/APIs/libraries TBD


-can be demonstrated from within TIKE -Currently available: *astroquery.mast AWS cloud services, now free! (<u>https://</u> <u>astroquery.readthedocs.io/en/latest/mast/mast.html</u>) *prototype client-side cutout library in a branch of Astrocut: <u>https://github.com/spacetelescope/astrocut/tree/s3-support</u> Invited: Archival data retrieval and analysis in the time domain: speak, friend, and enter

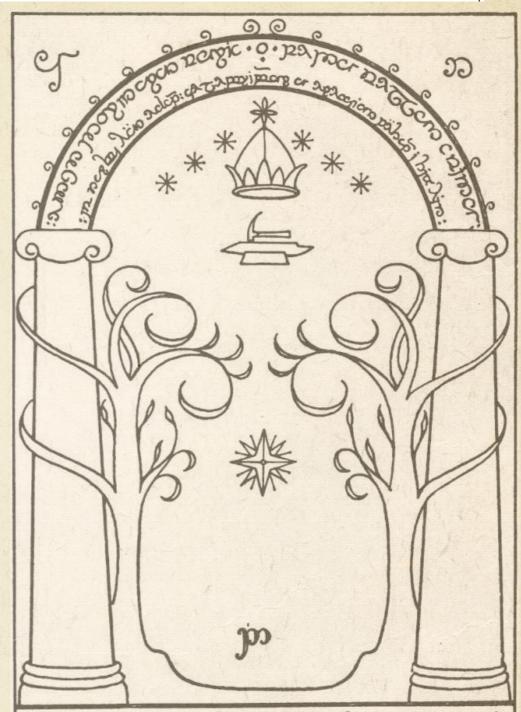
'What does the writing say?' asked Frodo, who was trying to decipher the inscription on the arch. 'I thought I knew the elf-letters, but I cannot read these.'

'The words are in the elven-tongue of the West of Middle-earth in the Elder Days,' answered Gandalf. 'But they do not say anything of importance to us. They say only: *The Doors of Durin, Lord of Moria*. *Speak, friend, and enter*. And underneath small and faint is written: *I, Narvi, made them. Celebrimbor of Hollin drew these signs.*'

'What does it mean by *speak, friend, and enter*?' asked Merry.

'That is plain enough,' said Gimli. 'If you are a friend, speak the password, and the doors will open, and you can enter.'

Bere is written in the Feänorian characters according to the mode of Beleriand: Ennyn Durin Aran. Moria: pedo mellon a minno. Jm Darvi hain echant: Celebrimbor o Eregion teithant i thiwhin. Invited: Archival data retrieval and analysis in the time domain: speak, friend, and enter


'What does the writing say?' asked Frodo, who was trying to decipher the inscription on the arch. 'I thought I knew the elf-letters, but I cannot read these.'

'The words are in the elven-tongue of the West of Middle-earth in the Elder Days,' answered Gandalf. 'But they do not say anything of importance to us. They say only: *The Doors of Durin, Lord of Moria*. *Speak, friend, and enter*. And underneath small and faint is written: *I, Narvi, made them. Celebrimbor of Hollin drew these signs.*'

'What does it mean by *speak, friend, and enter*?' asked Merry.

'That is plain enough,' said Gimli.

email archive@stsci.edu and the doors will open, and you can enter.'

Bere is written in the Feanorian characters according to the mode of Beleriand: Ennyn Durin Aran. Moria: pedo mellon a minno. Jm Darvi hain echant: Celebrimbor o Eregion teithant i thiwhin.

alucy@stsci.edu

Symbiotic/SkyMapper work at 2021PhDT......17L

Symbiotic collaborators: J. Sokoloski, G. J. M. Luna, K. Mukai, H. Breytenbach, D. Buckley, S. Potter, P. Woudt, P. Groot, B. Paul, N. Nuñez, A. Howell, C.Wolf, R. Manick, M. Shara, D. Zurek

Thank you to everyone at MAST and STScI who has helped me during my onboarding.