The Dynamic Galactic Plane viewed with the Roman Space Telescope

Kishalay De NASA Einstein Fellow, MIT Kavli Institute

The decade of time domain surveys

eROSITA + ART-XC VLA

VLA Sky Survey

Rubin Observatory Single epoch depth ~ 24 mag Comparable to Roman

1/23

ESA/Gaia/DPAC

ESA/Gaia/DPAC

Fast forward to Roman Surveys

The WFIRST Microlensing Survey at a Glance	
Area	1.96 deg ²
Baseline	4.5 yr
Seasons	6×72 days
W149 Exposures	\sim 41,000 per field
W149 Cadence	15 min
TH 10 C	110

Table 2

W149 Cadence	15 min
W149 Saturation	$\sim \! 14.8$
Phot. Precision	0.01 mag @ W149 ~ 21.15
Z087 Exposures	\sim 860 per field
Z087 Saturation	~13.9
Z087 Cadence	$\lesssim 12 \text{ hr}$ •
Stars ($W149 < 15$)	${\sim}0.3 imes10^6$
Stars ($W149 < 17$)	$\sim \! 1.4 imes 10^{6}$
Stars ($W149 < 19$)	\sim 5.8 \times 10 ⁶
Stars ($W149 < 21$)	$\sim 38 \times 10^{6}$
Stars ($W149 < 23$)	$\sim 110 \times 10^{6}$
Stars ($W149 < 25$)	$\sim \! 240 imes 10^6$

NIR 5 σ depth of ~ 24 AB mag per exposure, out to $\sim 2 \,\mu m$

Pathfinder to Galactic transient science with Roman in the NIR?

Timescale

Years

Gattini-IR at Palomar observatory

First light in September 2018

30 cr J ba De et al. 2

Palomar Gattini-IR (PGIR) field of view is 40 times larger than any other near-infrared instrument

Robotic eyes on the infrared sky

Covers 15,000 sq. deg. at 2 night cadence to J=15.7 AB mag "Quarter of 2MASS Every Night" 6/23

An optically missed population of novae

PGIR has doubled the discovery rate of novae in its observing footprint 8/23

First quantitative constraints on Galactic Nova Rate

Microquasars

Searching for second timescale flares Fast Readout: 0.9 s

Galactic FRB source SGR 1935+2154

NIR constraints on X-ray flares of SGR 1935+2154 Fast Readout: 0.9 s

Microquasars

Microquasars

Second timescale photometry of Nova V1674 Her

Microquasars

Microquasars

Accreting binaries, Dusty variables 15/23

~25 Billion Photometry Points Over ~2 years

Watch any 2MASS source change with time!

The X-ray Sky Revolution

Evolutionary state, age, binary separation, supernova kicks..

Relating donor variability to the dynamic X-ray behavior

Obscured Young Star Outbursts

Reddened microlensing events 18/23

Looking ahead to Roman

Looking ahead to Roman

Quarter of the galaxy's stars in a night

Synergies with ground-based surveys

Roman can detect novae, accretion outbursts (cataclysmic variables, X-ray binaries, YSOs) across the Galaxy.

Roman will allow for the first time, routine identification and characterization their faint quiescent counterparts

Credit: NASA/ESA

YSOs: Resolved outflows

Accreting binaries: Donor Type/Variability/Period

Ground-based pathfinders are setting the stage for Roman transient science in the obscured Galactic plane

PGIR, 7500 sq. deg./night to J ~ 16 mag

Rubin, Optical, Depth ~ 24 mag

- 2022

WINTER, 400 sq. deg/night to J ~ 19 mag (see Frostig poster)

~ 2026

Roman Launch

23/23

Rubin = Outburst Discovery