A Roman program for very fast transients

Jeff Cooke, Jielai Zhang 👸 UWA Simon Driver, Umaa Rebbapragada, Jason Rhodes, Eric Huff,

Overview

motivation for Roman

- **Fast** *(millisecond-to-day duration)* **IR transients is an essentially unexplored field** *If history has taught us anything, its that nature has surprises when we develop a new instrument capability*
- Fast transients are relatively rare → Need to probe large volumes, need wide field instruments
- Fast exposures equate to shallow depths → Need sensitive telescopes/wide-field instruments
- Atmospheric transmission hinders some of this work from the ground, deep imaging needed to detect extragalactic fast transients and very early detections of slower-evolving transients
- Space-based imaging and depth of Roman enables accurate localisation in host galaxies, locations in tidal tails, and/or outside galaxies
- Observations of IR contribution to many known fast transient classes fragmented or non-existent
- Early detection or pre-burst detections of transients lacking in the IR
- True fast transient rates and overall transient rates require IR

- **New** unexplored regime New, unknown classes
- Theorized events Ultrafast novae, FRB counterparts, blitzars, NS-BH kilonovae, accretioninduced collapse, etc.
- **Known, high-impact** transients Kilonovae Search for non-GW-detected kilonovae and beyond LIGO/Virgo horizons (rates, populations)
- Dust-obscured known classes Novae, SNe, FBOTs, etc. (for true rates, behaviors, etc.)
- Early detection and fast time-scale monitoring of slower-evolving events
 - Tidal Disruption Events, AGN activity
 - All supernova types (explosion physics, CSM, environment, etc)
 - Stellar collisions/mergers, SPRITES, Intermediate Luminosity Red Transients, etc.

- Particle origins (neutrino, cosmic rays)
- Gamma-ray bursts (on- and off-axis, 'dark' GRBs, long, short, third?)
- Soft gamma-ray repeaters, magnetars
- X-ray bursters, X-ray flares
- SN Type Ia ejecta collisions with companion stars (progenitor models)
- Flare stars (test theory whether IR energy loss equals gain in all others)
- Supernova shock breakouts (core-collapse, Type Ia)
- Sub-mm/mm transients (new regime)
- Fast radio burst counterparts, radio fast transients, intra-day variables, etc.

New Norcia Observatory – Western Australia

DWF program

Overall concept:

- Coordinated simultaneous wide-field all-wavelength and particle deep, fastcadenced observations on the same field at the same time
- Real-time (minutes) data processing, analysis, transient identification
- Rapid-response (minutes) multi-wavelength triggers and conventional (hours later) ToOs
- Field monitoring and late-time observations

data

Roman 1 or 2 filter fast (< ~ 1 min) cadence over several consecutive days – via existing or GO program

SOC processed data analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.

1

observational mode and data flow

Roman 1 or 2 filter fast (< ~ 1 min) cadence over several consecutive days – via existing or GO program

SOC processed data analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.

+

0.5+ deg² wide-field radio through gamma-ray ground and space-based facilities coordinated to shadow Roman for simultaneous fast-cadenced data Transients searched in other wavelength data, cross-matched later with **Roman** and vice-versa – more complete physics, refined classifications, rates, etc.

data

observational mode and data flow

Simultaneous high-energy particles, gamma-ray, X-ray, UV, optical, mm/sub-mm, radio

data

Roman 1 or 2 filter fast (< ~ 1 min) cadence during 4 hr NNO pass over several consecutive days per year **SOC processed data** analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.

2

0.5+ deg² wide-field radio through gamma-ray ground and space-based facilities coordinated to shadow Roman for simultaneous fast-cadenced data Transients searched in other wavelength data, cross-matched later with **Roman** and vice-versa – more complete physics, refined classifications, rates, etc.

Fast NNO Roman data access, real time processing & analysis through our transient search pipeline for deep IR fast transients

Fast Roman search, multi-wavelength cross-matched immediately, all data used to identify fast transients before they fade

Transient classifications, redshifts, physics, host galaxy properties, characterization, etc.

observational mode and data flow

Simultaneous high-energy particles, gamma-ray, X-ray, UV, optical, mm/sub-mm, radio

Multi-wavelength rapid-response *(seconds to minutes)* triggers, conventional (hours later) ToOs

SNS – (low Galactic extinction)

data

Roman deep tier: 2 images (70 x 2.9s) separated inconsistently in time for 18 tiles acquired during(?) 4hr NNO pass **SOC processed data** analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.

2

5.0+ deg² wide-field radio through gamma-ray ground and space-based facilities coordinated to shadow Roman for simultaneous fast-cadenced data Transients searched in other wavelength data, cross-matched later with **Roman** and vice-versa – more complete physics, refined classifications, rates, etc.

Fast NNO Roman data access, real time processing & analysis through our transient search pipeline for deep IR fast transients

Fast Roman search, multi-wavelength cross-matched immediately, all data used to identify fast transients before they fade

Transient classifications, redshifts, physics, host galaxy properties, characterization, etc.

σ

Φ

Ω

()

missed science in pink

- New unexplored regime New, unknown classes
- Theorized events Ultrafast novae, FRB counterparts, blitzars, NS-BH kilonovae, accretioninduced collapse, etc.
- **Known, high-impact** transients Kilonovae (binary neutron star, neutron star-black hole) Search for non-GW-detected kilonovae and beyond LIGO/Virgo horizons (rates, populations)
- Dust-obscured known classes Novae, SNe, FBOTs, etc. (true rates, behaviors, etc.)
- Early detection and fast time-scale monitoring of slower-evolving events
 - Tidal Disruption Events, AGN activity
 - All supernova types (explosion physics, CSM, environment, etc)
 - Stellar collisions/mergers, SPRITES, Intermediate Luminosity Red Transients, etc.

- Particle origins (neutrino, cosmic rays)
- Gamma-ray bursts (on- and off-axis, 'dark' GRBs, long, short, third?)
- Soft gamma-ray repeaters, magnetars
- X-ray bursters, X-ray flares
- SN Type Ia ejecta collisions with companion stars (progenitor models)
- Flare stars (test theory whether IR energy loss equals gain in all others)
- Supernova shock breakouts (core-collapse, Type Ia)
- Sub-mm/mm transients (new regime)
- Fast radio burst counterparts, radio fast transients, intra-day variables, etc.

	observations EMS – (high Galactic extinction)		
1	Roman W146 at 51.8s (18 x 2.9s) acquired every 15 min, repeatedly for 7 tiles during 4 hr NNO pass		SOC processed data analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.
2	+		+
	1.5+ deg ² wide-field radio through gamma-ray ground and space-based facilities coordinated to shadow Roman for simultaneous fast-cadenced data		Transients searched in other wavelength data, cross-matched later with Roman and vice-versa – more complete physics, refined classifications, rates, etc.
Strategy S	+		Fast NNO Roman data access, real time processing & analysis through our transient search pipeline for deep IR fast transients
	+		+ Fast Roman search, multi-wavelength cross-matched immediately, all data used to identify fast transients before they fade
	Coordinated rapid-response and conventional ToO follow-up		Transient classifications, redshifts, physics, host galaxy properties, characterization, etc.

missed science in pink

- **New** unexplored regime New, unknown classes
- Theorized events Ultrafast novae, FRB counterparts, blitzars, NS-BH kilonovae, accretioninduced collapse, etc.
- **Known, high-impact** transients Kilonovae (binary neutron star, neutron star-black hole) Search for non-GW-detected kilonovae and beyond LIGO/Virgo horizons (rates, populations)
- Dust-obscured known classes Novae, SNe, FBOTs, etc. (true rates, behaviors, etc.)
- Early detection and fast time-scale monitoring of slower-evolving events
 - Tidal Disruption Events, AGN activity
 - All supernova types (explosion physics, CSM, environment, etc)
 - Stellar collisions/mergers, SPRITES, Intermediate Luminosity Red Transients, etc.

- Particle origins (neutrino, cosmic rays)
- Gamma-ray bursts (on- and off-axis, 'dark' GRBs, long, short, third?)
- Soft gamma-ray repeaters, magnetars
- X-ray bursters, X-ray flares
- SN Type Ia ejecta collisions with companion stars (progenitor models)
- Flare stars (test theory whether IR energy loss equals gain in all others)
- Supernova shock breakouts (core-collapse, Type Ia)
- Sub-mm/mm transients (new regime)
- Fast radio burst counterparts, radio fast transients, intra-day variables, etc.

	observations GO – (low Galactic extinction)		
1	Roman 1 or 2 filter, ~1 min consistent cadence on 1 or 2 tiles during 4 hr NNO pass for ~7 consecutive days/yr		SOC processed data analysed by our fast transient pipeline to discover deep IR fast transients – LC classifications, rates, etc.
2	+		+
	0.5+ deg ² wide-field radio through gamma-ray ground and space-based facilities coordinated to shadow Roman for simultaneous fast-cadenced data		Transients searched in other wavelength data, cross-matched later with Roman and vice-versa – more complete physics, refined classifications, rates, etc.
Strategy S	+		Fast NNO Roman data access, real time processing & analysis through our transient search pipeline for deep IR fast transients
	+		+ Fast Roman search, multi-wavelength cross-matched immediately, all data used to identify fast transients before they fade
	Coordinated rapid-response and conventional ToO follow-up		Transient classifications, redshifts, physics, host galaxy properties, characterization, etc.

- New unexplored regime New, unknown classes
- Theorized events Ultrafast novae, FRB counterparts, blitzars, NS-BH kilonovae, accretioninduced collapse, etc.
- **Known, high-impact** transients Kilonovae Search for non-GW-detected kilonovae and beyond LIGO/Virgo horizons (rates, populations)
- Dust-obscured known classes Novae, SNe, FBOTs, etc. (true rates, behaviors, etc.)
- Early detection and fast time-scale monitoring of slower-evolving events
 - Tidal Disruption Events, AGN activity
 - All supernova types (explosion physics, CSM, environment, etc)
 - Stellar collisions/mergers, SPRITES, Intermediate Luminosity Red Transients, etc.

- Particle origins (neutrino, cosmic rays)
- Gamma-ray bursts (on- and off-axis, 'dark' GRBs, long, short, third?)
- Soft gamma-ray repeaters, magnetars
- X-ray bursters, X-ray flares
- SN Type Ia ejecta collisions with companion stars (progenitor models)
- Flare stars (test theory whether IR energy loss equals gain in all others)
- Supernova shock breakouts (core-collapse, Type Ia)
- Sub-mm/mm transients (new regime)
- Fast radio burst counterparts, radio fast transients, intra-day variables, etc.

summary

Fast (millisecond-to-hours duration) IR transients is an essentially unexplored field

- Fast transients are relatively rare → Need to probe large volumes, need wide field instruments
- Fast exposures equate to shallow depths → Need sensitive telescopes/wide-field instruments
- Atmospheric transmission hinders some of this work from the ground, deep imaging needed to detect extragalactic fast transients and very early detections of slower-evolving transients
- Space-based imaging and depth of Roman enables accurate localisation in host galaxies, locations in tidal tails, and/or outside galaxies
- Observations of IR contribution to many known fast transient classes fragmented or non-existent
- Early detection or pre-burst detections of transients lacking in the IR
- True fast transient rates and overall transient rates require IR

Fast transient program with Roman

Capitalizes on fast access to New Norcia Observatory data, builds on existing DWF program

Observational approach #1

Detects fast IR transients, cannot confirm or classify many, no redshift, spectral, or physics info **Observational approach #2**

Detects fast IR transients, confirms and classifies some, physics insight, no redshift or spectral info Observational approach #3

Detects fast IR transients, confirms and classifies many, provides redshift, spectral, and physics info