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• world’s largest CCD camera: 3.2 * 109 

pixels 

• 6 optical bands: ugrizy (320-1050nm) 


• 1,000 images/night = 15 TB/night

LARGE SYNOPTIC SURVEY TELESCOPE
Call for LSST Cadence White Papers Document-28382 Latest Revision 2018-06-28

A Examples of open survey strategy optimization questions

The quantitative optimization of the LSST observing strategy requiresmany detailed decisions
to bemade, often with only an indirect science justi�cation, or with con�icting science drivers.
The current most signi�cant open questions and associated tradeo�s are listed below for the
main survey and each mini survey. White papers are speci�cally encouraged to address these
questions.

FIGURE 1: The current baseline survey includes the main Wide-Fast-Deep survey and eight
candidate mini surveys: the North Ecliptic Spur, the Galactic Plane, the South Celestial Pole,
and the �ve �elds of Deep Drilling mini surveys. This �gure demonstrates their footprint
in the current baseline simulated survey and the total number of visits in all bands. We
are seeking suggestions for modi�cation of the survey strategy, especially suggestions for
changes to the mini surveys.

A.1 The main Wide-Fast-Deep survey

The baseline survey strategy optimizes the amount of sky covered in any given night (subject
to the constraint of gathering pairs of visits in each night - generally, but not always, in a single
�lter), and allows the entire sky visible at any time of the year to be covered in about three
nights. The basic strategy is designed to give roughly uniform coverage over the sky at any
given time, and to reach the survey goals for measuring stellar parallax and proper motion,

15

Call for White Papers on LSST Cadence Optimization  
Document-28382 

LSST a deep “video” of the sky

Filter Single 
exposure u 23.9

 g 25.0
 r 24.7
i 24.0
z 23.3
y 22.1

5-sigma point source depth
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LSST data products

Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.

Now

60s

24h

Year

End

37s
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LSST ~ 10 million transient alerts per night 

promising candidates for <X science>

?
+ connecting with other telescopes and data?
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promising candidates for <X science>

+ connecting with other telescopes and data?

Rubin community brokers

LSST ~ 10 million transient alerts per night 
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Rubin community brokers

ALeRCE

Babamul

ANTARES
Pitt-google

Lasair

AMPEL
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Full stream brokers

• Will receive from Rubin 

ALL transient candidates 
within 37 seconds of 
detection


• Will do this for the 10 
years of operations

In 2019….


• 14 Letters of Intent


• A lot of work


• Decision on August 2021!
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LSST ~ 10 million transient alerts per night 
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promising candidates for <X science>

+ connecting with other telescopes and data
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• A community driven effort, open to anyone 

• A community of >40 researchers and engineers >7 countries and growing!


• Open source data + source code
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• Designed for Rubin with big data technology (e.g. distributed computation)


• Selected by Rubin Operations to receive the full alert stream for 10-years

• A community driven effort, open to anyone


• A community of >40 researchers and engineers >7 countries and growing!


• Open source data + source code
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• Designed for Rubin with big data technology (e.g. distributed computation)


• Selected by Rubin Operations to receive the full alert stream for 10-years

• Now processing ZTF II public alert stream available at fink-portal.org

• A community driven effort, open to anyone


• A community of >40 researchers and engineers >7 countries and growing!


• Open source data + source code

http://fink-portal.org
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• Designed for Rubin with big data technology (e.g. distributed computation)


• Selected by Rubin Operations to receive the full alert stream for 10-years

• Now processing ZTF II public alert stream available at fink-portal.org

• First publication A. Möller, J. Peloton, E.E.O. Ishida et al. MNRAS 2020, arXiv: 2009.10185


•   Funding to deploy at CC-IN2P3 for LSST 


French computing centre where half of the LSST data will be processed

• A community driven effort, open to anyone


• A community of >40 researchers and engineers >7 countries and growing!


• Open source data + source code

http://fink-portal.org
https://arxiv.org/abs/2009.10185
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Fink in a nutshell
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LSST ~ 10 million transient alerts per night  
~10,000 every 37s
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Catalogues

Survey 
streams

X

Cross-match

- VOEvents / GCN 
- Dynamic catalogues

LSST ~ 10 million transient alerts per night  
~10,000 every 37s



PRIMARY LOGO

SECONDARY LOGO

#15284F

#F5622E

#3C8DFF

#D5D5D3

A. Möller | Transient Universe with Roman 2022

X

Cross-match

A known variable star…. Or….

Known Variable Star Known galaxy close by

Extra-galactic?

LSST ~ 10 million transient alerts per night  
~10,000 every 37s

SIMBAD
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Catalogues

Survey 
streams

X

Cross-match

- VOEvents / GCN 
- Dynamic catalogues

LSST ~ 10 million transient alerts per night  
~10,000 every 37s
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+

Catalogues

Survey 
streams

X

Cross-match

+

ML classification 
Fink features

- Probability of this 
object being X 

- It looks like a blue 
object by 0.2 
magnitudes

LSST ~ 10 million transient alerts per night  
~10,000 every 37s
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+

Catalogues

Survey 
streams

X

Cross-match

+

+ Customizable 
filtering

ML classification 
Fink features

I want transients that are close to a 
known galaxy and have large 

probability of being X

- Probability of this 
object being X 

- It looks like a blue 
object by 0.2 
magnitudes

LSST ~ 10 million transient alerts per night  
~10,000 every 37s
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+

Reduced streams
Catalogues

Survey 
streams

X

Cross-match

+

+ Customizable 
filtering

Science Portal 
+ REST API

“real-time” API

- Follow-up - Visualisation 
- Analysis<minutes!

ML classification 
Fink features

LSST ~ 10 million transient alerts per night  
~10,000 every 37s
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Since Nov 2019 > 120 million alerts collected & processed


deployment with ZTF II

Reduced streams:

• Supernovae

• Microlensing

• Variable stars

• Solar System objects

• GRB afterglows

• Kilonovae

• Early type Ia supernovae

• And more…


Möller, Peloton, Ishida et al. 2021  MNRAS, arXiv:2009.10185

Transients with a close-by 
galaxy

Variable stars (SIMBAD)
Solar System Objects 

(confirmed + candidates)

SN candidates



PRIMARY LOGO

SECONDARY LOGO

#15284F

#F5622E

#3C8DFF

#D5D5D3

A. Möller | Transient Universe with Roman 2022 26

Rubin & Roman
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Photometry 
Rubin public optical photometry from Difference Imaging to complement Roman NIR data
+ contextual information + features
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Early transient candidates  DES photometric SNe Ia with SuperNNova 5

(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.

MNRAS 000, 1–15 (2020)

+ shall we trigger follow-up?  
+ what could it be?

Photometric detection @ Rubin
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DES photometric SNe Ia with SuperNNova 5

(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.
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In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.

MNRAS 000, 1–15 (2020)
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DES meeting, Brisbane, November 2017
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Spectroscopic follow-up

Spectroscopic resources are limited optimisation needed!


We will not be able to follow-up all candidates in the Rubin 
era…

Early transient candidates  DES photometric SNe Ia with SuperNNova 5

(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.
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(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.
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Figure 3. Detectability constraints for two filters: LSST/r -
band (top) and Roman/H -band (bottom). Contours indicate
the fraction of 48,600 simulated kilonovae (900 simulations
each rendered at 54 viewing angles) with apparent magni-
tudes brighter than the limiting magnitude in each filter, for
a given redshift and observer-frame time. The three white
contours demarcate regions where 5%, 50%, and 95% of sim-
ulated kilonovae are detectable. The magenta curve repre-
sents each filter’s ability to detect AT2017gfo-like kilonovae.

lengths (see Table 1). Typical redshift reaches vary from
z50% = 0.0085 (⇠38 Mpc) for the MeerLICHT/z -band
up to z50% = 0.29 (⇠1.5 Gpc) for the Roman/R-band.
As anticipated, the typical redshift reach for each in-
strument correlates significantly with the limiting mag-
nitude distribution in Figure 1. We remind the reader
that simulated lightcurves are not available earlier than
three hours post-merger (rest frame), resulting in no de-
tectability predictions in this time range. This omission
may bias the detectability estimates of low-wavelength
(ultraviolet) filters, such as the ULTRASAT/NUV -
band, LSST/u-band, and UVOT/u-band.

4. DETECTABILITY VARIATIONS WITH
KILONOVA PROPERTIES

The typical redshift reach often varies significantly
with kilonova properties, such as the ejecta mass or ve-
locity. Larger ejecta masses generally result in more
luminous kilonova emission, allowing for detection at
higher redshifts, while kilonovae containing lower ejecta
masses are only detectable at nearby distances. This
mass dependency makes it di�cult to determine whether
a GW candidate event will produce an observable kilo-
nova for a given instrument. Robust detectability met-
rics are further muddled by compounding degeneracies
with other parameters such as velocity of the expanding
ejecta, viewing angle, and composition.
Di↵ering kilonova properties induce variations in kilo-

nova detectability. For example, a kilonova with large
wind ejecta mass and small dynamical ejecta mass may
be easily detectable in the ultraviolet but di�cult to ob-
serve in near-infrared filters, while other kilonova param-
eters may produce emission that is primarily detectable
in the infrared. Lower-wavelength filters probe the wind
ejecta, with peak emission in optical wavelengths at
early times. At the low-wavelength extreme, ultraviolet
instruments capture the early structure of the outermost
wind-driven ejecta (Arcavi 2018; Banerjee et al. 2020).
However, these low-wavelength filters o↵er little insight
into the dynamical ejecta, which peaks at redder wave-
lengths. Additionally, a filter’s variation with kilonova
parameters depends on the source redshift: high-redshift
kilonova emission is shifted to higher wavelengths, re-
quiring subsequently redder filters to capture variabil-
ity in dynamical ejecta mass. If kilonovae properties
are unknown, multi-band observations across UVOIR
wavelengths are necessary to maximize the probability
of kilonova detection.
Figure 5 demonstrates the variation in kilonova de-

tectability in the Roman/H -band for di↵erent ejecta
masses. The left (right) column restricts the simulation
set to one dynamical (wind) ejecta mass, while allowing
all other parameters to vary, resulting in 9720 simula-
tions per panel (180 simulations each with 54 viewing
angles). In the left column, dynamical ejecta mass varies
from the lowest (0.001M�) to the largest (0.1M�) val-
ues in the LANL simulation grid. Larger ejecta masses
enhance detectability, as 50% of simulations with dy-
namical ejecta masses of 0.1M� are detectable out to
z = 0.31, with peak emission three days post-merger.
Lower ejecta masses induce both dimmer emission and
an earlier peak timescale (e.g., Kasen et al. 2017),
as shown by the diminished late-time detectability and
smaller typical redshift reach (z = 0.16) for dynami-
cal ejecta masses of 0.001M�. However, a small subset
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Transient photometric classification
Obtaining large samples without spectroscopic follow-up

DES photometric SNe Ia with SuperNNova 5

(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.
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Transient photometric classification
Obtaining large samples without spectroscopic follow-up: type Ia supernovae

DES photometric SNe Ia with SuperNNova 5

(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.
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(a) RNN (b) BNN MC dropout (c) BNN Bayes by Backprop

Figure 1. S����NN��� classification for DES 5-year SN candidate (SNID 1936171) using three di�erent Neural Networks: (1a) baseline RNN, (1b) Bayesian
NN MC dropout, (1c) Bayesian NN Bayes by Backprop. All methods were trained with the 26XBDES simulation. Top row show the SN candidate light-curve
from DES (g,r,i,z), bottom row shows the classification scores for each method (SN Ia: red, non SN Ia: yellow). The BNN methods provide classification
uncertainties (shadowed regions show 68% and 95% contours). The large uncertainties on the classification probability are representing the lack of confidence
in this classification. Uncertainties around MJD 20-30 are correlated to the low S/N while around MJD 50-60 that correlation is less straightforward.

in simulations but is more robust against photometry outliers in real
data.

4.4 SNN trained on 26XBDES simulations using host redshifts

In the following, for the DES 5-year analysis, we use S����NN���
models trained with a larger dataset, 26XBDES simulations, and
the best configuration of SNN found in the previous section. We
increase the batch size to 1024 for e�cient resource allocation. The
larger simulation and optimised hyper-parameters provide a better
classification accuracy using redshifts with accuracies > 98% as
shown in Table 1.

4.4.1 Ensemble methods

For cosmology, we aim to have a robust classification method. In
ML, model averaging is a promising method to obtain more robust
predictions (Dietterich 2000; Lakshminarayanan et al. 2016). It has
been introduced in regression applications in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce these predictions,
multiple models are combined. This can be viewed as a mechanism
for Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference which are explored in Section 6. We explore
two possible ensemble methods: probability averaging and predic-

tion averaging. Probability averaging uses the predicted probability
scores and average them to select light-curves that are above the 0.5
probability threshold of being SNe Ia. The other method averages
the predictions and selects the most common one.

We find that probability averaging increases accuracy and purity
⇡ 0.1% for both cosmo and cosmo_quantile norms as can be seen in
Table 1. We find that the overlap between photometrically selected
Type Ia SNe using probability averaging and five models with single
seeds is of 96.6% for cosmo and 96.8% cosmo_quantile norms. A
thorough analysis on systematics linked to this classification method
can be found in Vincenzi:2021.

We will use probability averaging ensemble method and the
cosmo_quantile norm in the rest of this work.

Table 1. Type Ia vs. non Ia classification metrics with redshift information.
Model trained and evaluated using 26XBDES simulations. We show metrics
for a balanced validation set which is di�erent from a realistic set due to rates
and detection e�ciency. Uncertainties for "single model" are expressed by
standard deviation of 5 models with di�erent seeds and ensemble methods
using three sets of five seeds.

method accuracy e�ciency purity
cosmo

single model 98.33 ± 0.01 98.65 ± 0.05 98.03 ± 0.06
target average 98.43 ± 0.02 98.81 ± 0.02 98.08 ± 0.02
probability average 98.45 ± 0.01 98.80 ± 0.02 98.11 ± 0.02

cosmo_quantile

single model 98.35 ± 0.01 98.68 ± 0.07 98.03 ± 0.05
target average 98.452 ± 0.003 98.84 ± 0.02 98.09 ± 0.01
probability average 98.46 ± 0.01 98.83 ± 0.03 98.10 ± 0.03

4.4.2 Generalization

In this Section we verify the ability of our trained models to classify
data generated using di�erent simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or PSNID. We observe a de-
crease of < 0.5% in accuracy. This shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2%. This
is expected as ensemble method are usually more robust and thus
generalize better than single models.

4.5 Bayesian Neural Networks trained on 26XBDES
simulations using host-redshifts

In classification tasks, it is important to evaluate the reliability of
a model’s predictions. Bayesian Neural Networks (BNNs) are a
promising method to provide uncertainties reflecting the model’s
confidence on the prediction.

MNRAS 000, 1–15 (2020)

Select a sample using a probability threshold

+ selection cuts

SNIa vs non-Ia SNe classification in the Dark Energy Survey using light-curves & host-galaxy 
spectroscopic redshifts with SuperNNova 

Accuracies >98% (Vincenzi+ 2021, AM+2022)

Contamination ~2% (Vincenzi+ 2021)

Also see Helen Qu’s talk on Day 1
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Transient photometric classification

Spectroscopic SNe Ia (Smith+2020, DES collab. in prep)

Photometric SNe Ia with host redshift (Möller+2022)

Spectroscopic samples of hundreds can become photometrically identified samples of thousands!

Obtaining large samples without spectroscopic follow-up: type Ia supernovae

Dark Energy Survey SN 5-year
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Transient photometric classification

Spectroscopic samples of hundreds can become photometrically identified samples of thousands! 
+ NIR data from Roman for better calibration and information  … 

Going beyond our current samples with a rich dataset!

Obtaining large samples without spectroscopic follow-up

6 

selection effects (Vincenzi, Sullivan, Möller et al. 2021). By reducing this major limitation, we will obtain better 
measurements to understand what dark energy is. 

Measuring intrinsic supernova properties. I propose to 
use the sample obtained in this project and model the intrinsic 
properties of supernovae through time. For this I will extend 
previous approaches to map observed-to-intrinsic properties 
(Scolnic & Kessler 2016, Popovic et al 2021) by exploring 
continuous redshift modelling which should be more 
coherent with stellar evolution laws.  

Can we unveil the stars that produce Type Ia 
supernovae? Currently, several formation channels and 
explosion mechanisms are considered with two main 
channels being most favoured in recent literature: two carbon 
oxygen white-dwarfs merging or the accretion of matter from 
a companion star by a carbon oxygen white dwarf star. While 
a single channel could explain the standardization properties 
of Type Ia supernovae, the observed properties could 
indicate that they arise from multiple progenitor scenarios. I 
propose to compare the local properties from SNe Ia selected 
in this DECRA with those predicted from state-of-the-art 
stellar evolution and population synthesis models. Possibly solving the long-standing questions of which stars produce 
SNe Ia, what are their environments and physics. This increased knowledge will allow a better measurement and 
understanding of what dark energy is. 

Can ML uncertainties provide additional information on supernova properties? (Student project part II): I 
propose to study the correlations of SN Ia properties with classification uncertainties from Bayesian Neural Networks. 
This could provide insight on biases from machine learning algorithms and interpretation of the classification 
uncertainties.  Is the ML algorithm capturing part of our physical understanding? Recent studies have shown that bluer 
SNe Ia may be better standardizable candles (Vincenzi et al. 2021 incl Möller, Brout et al. 2021), can we see a 
correlation indicating this in our ML algorithms? This auxiliary project will be perfect for an interdisciplinary student. 

 

[O3] Objective 3 Discover exotic transients to unveil extreme physics 

The third effort of this project is to discover and study exotic transients. The key deliverable will be improved 
understanding of exotic transients and their physical processes. I will also develop fast selection and communication 
mechanisms to coordinate complementary observations by facilities in Australia and around the world. 

Discoveries of exotic transients and their varied extreme physics - despite popular thought - are not usually linked to 
serendipity. They can be discovered through large surveys data mining (Pursiainen et al. 2018 incl. Möller) or 
identification through using spectra (Grayling et al. 2021, Gutiérrez et al. 2020 incl. Möller). Another approach is to 
search for counterparts to detections, such as gravitational waves which recently resulted in the discovery of a kilonova 
(Abbot et al. 2017, Andreoni et al. 2017 incl. Möller) or Fast Radio Bursts which have not yet resulted in a counterpart 
discovery (Farah et al. 2018, Price et al. 2019 both incl. Möller). 

With billions of transients to be detected by Rubin, new classes are essentially guaranteed. To unveil the nature of these 
transients, complementary observations by other facilities are key. This requires fast and efficient selection mechanisms 
and communication. However, events like the first kilonova have shown weaknesses. It took more than 11 hours from 
the binary merger for telescopes to detect the first optical light due to delayed alerts and observing time constraints. 

How to optimize discovery of exotic transients? New transients are relatively rare and are caused by a wide range of 
physical mechanisms. I propose to start with a straightforward approach, filtering out known transients using algorithms 
developed in [O1] for supernova classification and current catalogues of known transients. Then, those remainder 
candidates can be data mined. In this approach I will develop features to characterize the transient’s duration, increase 
of brightness and other properties and incorporate them into Fink broker. An extension for this discovery approach is 
the use of specific exotic transient detection algorithms such as the one developed in [O1]. 

Do exotic transients produce emissions at other wavelengths? We expect transients to emit radiation at more than 
one wavelength regime revealing their kinematics, physics, chemical production and environments. A main aim of this 

Fig 4. Number of high-quality supernovae that should 
be observed in the 10 years of Rubin LSST wide 

(WFD) and deep (DDF) regions. The red sample (Low 
z+PS1+ SDSS+SNLS) is similar to that of previous 

SN Ia analyses. Note the logarithmic vertical axis, 
indicating the orders of magnitude more supernovae 

that Rubin will detect compared to other existing 
surveys. Figure from Mandelbaum et al. 2019. 

Mandelbaum et al. 2019
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• Kilonovae J. Vlieghe, GRANDMA 

• Microlensing E. Bachelet, M. Moniez


•  GRB (orphans, on-axis/off-axis, SVOM) D. Turpin, J. Bregeon, O. Godet, G. Ducoin, R. Le Montagner, L. 
Bouchet, M. Llamas 

• SSO S. Karpov, B. Carry, R. Le Montagner, 

• Neutrino KM3NET: D. Dornic, G. Vannoye, V. Kulikoskiy


• Supernovae M. Leoni, T. Allam, U. Burhanudin, J. Maund


• PISN Blondin,  Pruzhinskaya 

• Fast transients Biswas


• Anomalies Pruzhinskaya, Kornilov, Russeil, Beschastnov


And many others: Arnault, Hrivnac, Pateyron, Boutigny, Hernandez, Gangler, Russeil, Nebot, Pineau

Ongoing projects & collaborators
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Rubin community brokers allow harnessing the power of optical 
time-domain data

fink-broker.org contact@fink-broker.org 

http://fink-broker.org
mailto:contact@fink-broker.org
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Rubin community brokers allow harnessing the power of optical 
time-domain data

fink-broker.org contact@fink-broker.org 
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• Built on state-of-the-art technologies

• Is already processing ZTF data stream (MoU 2020). 

• First science modules deployed: SNe, GRB, microlensing, … 

http://fink-broker.org
mailto:contact@fink-broker.org
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Rubin community brokers allow harnessing the power of optical 
time-domain data

fink-broker.org contact@fink-broker.org 

• Complementary photometry

• Multi-wavelength/messenger optical counterparts

• Catalogue information for transients

• Early classification for follow-up coordination & analysis

• Large photometrically selected samples

• Automated reporting + real-time streams for follow-up
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• Built on state-of-the-art technologies

• Is already processing ZTF data stream (MoU 2020). 

• First science modules deployed: SNe, GRB, microlensing, … 

Transient science can only gain with synergies between Roman’s, 
Rubin’s and other multi-wavelength and messenger!

http://fink-broker.org
mailto:contact@fink-broker.org

