AGN Sciences: from Subaru to TMT

Tohru Nagao (Kyoto Univ., Japan)

Based on discussion with:

M. Akiyama (Tohoku U.), K. Aoki (NAOJ/Subaru), M. Imanishi (NAOJ/ Subaru), N. Kashikawa (NAOJ/TMT), T. Kawaguchi (Yamaguchi U.), N. Kawakatsu (Kure College), Y. Matsuoka (Princeton), T. Minezaki (U. Tokyo/IoA), T. Misawa (Shinshu U.), S. Ozaki (NAOJ/ATC), H. Sugai (U. Tokyo/IPMU), A. Tanikawa (Aizu U.), Y. Terashima (Ehime U.)

22-23 July 2013, Waikoloa, Hawaii Thirty Meter Telescope Science Forum

~400 pages, issued in Feb. 2011

TMT Science White Paper made by Japanese astronomers (led by NAOJ)

- ~ coordinator: T. Kodama
- ~ cosmology: N. Yoshida et al.
- ~ galaxies: K. Motohara et al.
- ~ AGN/SMBH: T. Nagao et al.
- ~ stars/MW: W. Aoki et al.
- ~ planets: N. Narita et al.

AGN/SMBH: Big Problems

(1) Structures around SMBHs

(2) Gas inflow/outflow (or "feeding"/"feedback")

(3) Cosmological evolution of SMBHs and AGNs

Dusty Torus around SMBH

Important, because...

- ~ determining the AGN type
- ~ dominating the IR SED of AGNs
- ~ could be massive gas reservers
- ~ possible sites for star formation

However, currently...

- ~ various models proposed so far
- ~ but not yet discriminated
- ~ since the torus has not spatially unresolved observationally
- ~ thus its true spatial structure is unknown
- ~ relation with the star-formation activity also unknown

Dusty Torus around SMBH

An example of numerical simulations for dusty tori

- ~ (in this case) a few tens pc, distributed around $1.3 \times 10^7 M_{sun} SMBH$
- ~ circumnuclear starformation (SNe) makes the vertical structure
- ~ is the circumnuclear starformation required for tori and AGNs?

Active star formation is actually seen in active AGNs

- ~ is this starformation occurring at the torus region?
- ~ spatial info of the torus and star-forming regions necessary

Mid-IR Observations with TMT

- No 1st gen. MIR instruments on TMT, but possibly in 2nd gen.
 - ~ "MICHI"; please see posters by Packham-san and Honda-san
 - ~ with imaging, high-dispersion spec, and IFS functions
 - ~ Mauna Kea has a great advantage at MIR than GMT/E-ELT
 - ~ No planned Q-band function on E-ELT
 - ~ JWST cannot achieve this spatial resolution at MIR
 - ~ Unique science for TMT, in the ELT era!!

(2) Gas Inflow and Outflow

AGN outflows sometimes remove the ISM in host galaxies, resulting in halting the star-forming activities. This could cause the evolutionary link between SMBHs and their hosts (so-called "co-evolution" due to the "AGN feedback").

NGC 4388 image (Subaru; Yoshida+02)

OUTFLOW

(data: Subaru/Kyoto3DII IFU mode, with 0.4" resolution at optical)

AGN outflow can be characterized by IFS observations

- ~ size, velocity, luminosity \rightarrow mass-outflow rate, kinematic energy
- ~ diagnosing whether the star formation can be halted or not
- How about at higher redshifts (z>1)?
 - ~ AGN feedback are "expected" to be more common... Really?
 - ~ diffuse low surface brightness at high-z... TMT needed!!

Near-IR IFS Observations with TMT

IRIS (1st gen. instrument) has the near-IR IFS modes

- ~ diffraction-limited resolution: 15 mas @K-band (with NFIRAOS)
- ~ FoV of 0.45"x0.64" 2.25"x4.4" with 4-50 mas/spaxel
- ~ R=4000-10000, ideal to avoid OH sky lines (cf. X-Shooter)
- ~ Δv =30-75 km/s, enough for resolving the velocity structure

Powerful to explore the velocity structure in galaxies

- ~ 15 mas corresponds to 100pc @z~0.5, 150pc @z>1
- ~ matching with the ALMA resolution (most extended config.)
- ~ combining TMT & ALMA \rightarrow both atomic & molecular phases

Understanding the quenching mechanism of the star formation is important, specifically at $z\sim1-2$ where the global SFRD and the accretion onto SMBHs start to decline.

Reddy et al. (2007) see also the TMT Detailed Science Case

Quasar Sample: SDSS Era

SDSS QSOs (i<21)

Detailed studies do not require TMT in general.

lkeda, Nagao, et al. (2011,12)
high-z faint sample (COSMOS):
 spectroscopically identified with Subaru/FOCAS

Quasar Sample: SDSS Era

SDSS QSOs (i<21)

Detailed studies do not require TMT in general.

J & K spectra of a SDSS QSO at z=6.4 (z-band mag = 20.0), with Keck/NIRSPEC (2-3 hours for each)

 \rightarrow M_{BH}, L/L_{Edd}, metallicity, absorption-line system, ...

Quasar Sample: Beyond SDSS

SDSS QSOs (i<21)

Detailed studies do not require TMT in general.

High-z Low-L QSOs (i>22)

Not yet been explored in detail... (especially at z>6)

Number density and its evolution are still controversial. New systematic surveys for lowluminosity high-z quasars are needed, before detailed TMT observations (we need targets!).

lkeda, Nagao, et al. (2011,12)
high-z faint sample (COSMOS):
 spectroscopically identified with Subaru/FOCAS

Quasar Sample: Subaru/HSC → TMT

Hyper Suprime-Cam on Subaru

Subaru next-gen. wide-field camera (FoV: 1.5 deg in diameter) FL has been already done Legacy survey will start soon (>1000 deg², grizy 5 bands)

High-z Low-L QSOs

Detailed spectra needed for...

- ~ redshifts
- $\sim M_{BH}, L_{AGN}/L_{Edd}$
- ~ emission-line fluxes \rightarrow metallicity
- ~ absorption line systems
- ~ IGM physical and chemical properties

TMT can measure these quantities, that will result in...

- ~ identifying very young proto-quasars
- ~ understanding the origin and evolution of SMBHs

Summary

- (1) Structures around SMBHs
 - ~ Resolving dusty tori and nuclear star formation
 - ~ by possible 2nd-gen. MIR instrument with MIR-AO
- (2) Gas inflow/outflow (or "feeding"/"feedback")
 - ~ AGN feedback at z>1 should be examined
 - ~ by diffraction-limited IFS obs. with TMT/IRIS
- (3) Cosmological evolution of SMBHs and AGNs
 - ~ High-z low-luminosity quasars should be examined
 - ~ Subaru/HSC will provide good targets to TMT
 - ~ Detailed spectra will bring break-through results
- ※ Exposure Time Calculator for TMT (developed at TMT-J office) available at: http://tmt.mtk.nao.ac.jp/ETC-e.html

Thirty Meter Telescope

National Astronomical Observatory of Japan

Home > TMT imaging ETC

0.01?

~30-40 with AO

English Top
NAOJ TMT Project
Events
TMT ETC NEW!
Members
Contact
Links to TMT Partners
TMT Headquarters
TMT Canada
TMT China
TMT India
Related Information
Links

qoT

TMT Imaging ETC (under construction)

For details of the calculation, please see <u>TMT ETC Readme</u> page.

Basic parameters of TMT first generation instruments (imaging mode) IRIS MOBIE IRMS Wavelength coverage (μ m) 0.8 - 2.40.31 - 1.1 0.95 - 2.45 Field of view 17".2 x 17".2 9'.6 x 4'.2 2' x 2' Hawaii-2RG Hawaii-4RG Unreleased Detector (4K x 4K pix) (2K x 2K pix) 4 Pixel scale (mas/pix) 50 60 8 with AO 8 with AO Typical FWHM of PSF (mas) 800 600 w/o AO 600 w/o AO Read out noise 12 3 15 (electrons/pixel in rms)

0.01

~44-52 with AO

0.0003

~27

Source Geometry:

Dark current (electrons/sec/pixel)

Point Source Aperture radius to calculate S/N = FWHM x 2.0 ♀
 Extended Source Extract square region of size = 1.5 x 1.5 arcsecond²

Target Brightness:

(K (2.1μm) \$

Total throughput (%)

≥ 25.0 mag for point source
 ≥ 26.0 mag/arcsecond² for extended source
 ○ Vega
 ● AB

System Configuration:

Observatory Site: Hawaii Mt. Maunakea 🗘

Telescope Diameter: 30 (Ground) 💠 m

Airmass: 1.0 🛟

Pixel scale: 50 mas/pixel

FWHM of PSF: 600 mas

Read out noise: 10 electrons/pixel in rms

Dark current: 0.1 electrons/sec/pixel

