TMT Synergies with Subaru HSC+PFS and Other Facilities

Masami Ouchi (U. Tokyo) On Behalf of Subaru HSC/PFS Teams

Landscape of Opt/NIR Astronomy in ~2020

- EL observatories (e.g. TMT). Great sens.+res. Origin of obj.
- Survey telescopes. Imaging/Spec (e.g. LSST, Euclid+AFTA) → Feeding EL observatories
 In the past decades, we saw targets from SDSS/CFHT/HST/Subaru -> Keck+ spec
 - 1) Introducing survey telescope projects focusing on Subaru/HSC and PFS proj.
 - 2) TMT Synergies highlighting the past examples

i) Imaging Surveys

- Pan-STARRS, DES, and HSC followed by LSST, Euclid, and WFIRST-AFTA
 - In future, LSST covers the largest parameter space in depth and area (Willman's talk).
 - In present, Pan-STARRS(Chamber's talk) +DES are covering the largest in area ≥10³ deg².
 HSC is placed at the best among the present surveys in area ≤10³ deg².

Subaru/Hyper Suprime-Cam (HSC)

c) HSC Builder's blog

- Subaru optical imager w a 1.5deg-diamger FoV, 7x larger than previous Suprime-Cam.
- Subaru/HSC survey has started since March 24, 2014 under the collaboration of JP/US/TW.
- Spending 300 nights in 5 years
- Slowly started. ~2% of is completed so far.

First HSC Survey Data

- HSC 20 deg² data in GAMA field (one of HSC survey fields).
- It took only ~3 hours! Seeing: 0.4-0.6 arcsec (FWHM).

HSC Survey: 3 Layers

- Major goals: Dark energy and high-z objects/IGM
- Wide layer: 1400 deg², grizy (i=26)
 - Weak gravitational lensing
 - Galaxy clustering, properties of z~1 L* galaxy
 - Dark Energy, Dark Matter, neutrino mass, the early universe physics (primordial non-Gaussianity, spectral index)
- Deep layer: 28 deg², grizy+3NBs (i=27)
 - For calibration of galaxy shapes for HSC-Wide WL
 - Lyman-alpha emitters, Lyman break galaxies, QSO
 - Galaxy evolution up to z~7
 - Cosmic dawn (the physics of cosmic reionization)
- Ultra-deep layer: 3.5 deg², grizy+3NBs (i=28)
 - Type-Ia SNe up to z~1.4
 - LAEs, LBGs at target redshifts
 - Galaxies at faint end
 - Dark Energy, the cosmic reionization

HSC Cosmic Shear for Dark Energy

- Cosmic shear (very good for HSC). Tomography for 3 redshift bins (z<1.5).
- Lensing power spectrum \rightarrow Constraints on the dark energy's equation of state, w_{DE} , where $\rho_{DE} \propto a^{-3(1+w_{DE})}$.
- $\sigma(w_{DE})=0.04$ (comparable with the on-going DES projects).

HSC Survey: 3 Layers

- Major go: Subaru HSC NB filter (Φ600mm)
- Wide laye
 - Weak
 - Galaxy
 - Dark E
 early ι
 Gauss
- Deep laye
 - For ca
 - Lyman-alpha emitte
 - Galaxy evolution up
 - Cosmic dawn (the plane)
- Ultra-deep layer: 3.5 c
 - Type-Ia SNe up to z~1.4
 - LAEs, LBGs at target redshifts
 - Galaxy evolution
 - Dark Energy, the cosmic reionization

Probing Cosmic Reionization w Early Galaxies

Finlator+09

10

- HSC survey → Large sample of ~10,000 Lya emitting galaxies (LAE) at z~6-7, ~x100 larger than present sample. In 1 Gpc x 1 Gpc (comoving) area.
- LAEs are probes of reionization, because Lya is absorbed in neutral IGM at EoR.
- Lya LF (up to z=7.3). Determin. HI fraction w δx_{HI} =0.1.
- LAE clustering. Imprint of ionized bubble of IGM (e.g. McQuinn+07, Ouchi+10). Bubble topology →Physical processes (inside-out, filament-last, etc.)

ii) Spectroscopic Surveys

- In the mid 2000s, only LAMOST and WFMOS
- But, new programs are developing rapidly, exploiting the heritage of imaging surveys.
- Ongoing
 - LAMOST
- Planned
 - Subaru/PFS (succeeding WFMOS proj.)
 - KPNO/DESI (Formerly BigBOSS)
 - Euclid (spec. only in NIR)
- Concepts
 - MSE (Formerly ngCFHT)
 - William Herschel/WEAVE
 - 4MOST

MSE (ngCFHT)

<complex-block>

Major goal: Dark Energy

BAO: imprint of
the recombepoch acoustic
oscillation
→standard ruler

 $\sigma(D_A)/D_A=2-3\%$ for DESI and PFS (PFS reach a redshift of >2.

dapted: M. Takada's slide

Prime Focus Spectrograph (PFS)

 Multi-object fiber spectrograph for Subaru under the collaboration of Japan, Princeton, JHU, Caltech/JPL, LAM, Brazil, ASIAA. ~2018

★ Share WFC with HSC→→
 Fiber density: 2200/sq. degs (⇔ ~140 for BOSS; ~570 for DESI)

Number of fibers	2400		
Field of view	I.3 deg ² (hexagonal-diameter of circumscribed circle)		
Fiber diameter	I.I3" diameter at center I.03" at t		he edge
	Blue	Red	NIR
Wavelength range [nm]	380-650	630-970 (706-890)	940-1260
Central resolving power	~2350	~2900 (~5000)	~4200
Detector type	CCD	CCD	HgCdTe
	Appro Appro	ved by Preliminary [Design Review (2013

3 Key Sciences of PFS

Massive PFS spectroscopic follow up in the HSC imaging footprints

- Cosmology: 3D galaxy clustering
 - Dark Energy, neutrino mass, the primordial fluctuations
- Galactic archeology: studying phase-space structures of stars
 A stringent test of cold-dark matter structure formation scenario on small scales
- Galaxy evolution history
 - Study physical properties of galaxies from cosmic dawn to the present day

Galactic Archeology with PFS

Takada,.., Chiba,..., Cohen et al. (2014)

- PFS deep spectra of a million stars in MilkyWay and M31.
 → Radial velocities and elemental abundances.
- Chemo-dynamics study.
- Key questions:
 - What is the merging history of MilkyWay?
 - How did the old Galactic components from? (origin of thick disk and stellar halo)
 - How does M31 differ from the Milky Way? (merger/ small-scale structures)

TMT SYNERGY

Large Area Survey: Early Supernovae

- Luminous supernovae, Type IIn SNe up to z~6
 - SNe with narrow emission lines. Bright in UV. (~L* galaxy)
 - Explosions of very massive stars (> ~ 50 Msun)

T. Moriya et al. (2013), M. Tanaka et al. (2012)

- Pair-instability SNe really exist? Serendipitous discovery?
 - Still no 'widely-accepted' observations
 - Expected to exist in metal-poor environment: high-z with TMT/WFOS,IRIS.

Large Area Survey Feedback Process/Galaxy Outflow

- Subaru large-area NB surveys \rightarrow Rare largely extended [OII]3727 nebulae ([OII] blobs) w a > 30 kpc size at z~1 (~10⁻⁶ Mpc⁻³; Yuma, MO+13). AGN + non-AGN.
- Keck/MOSFIRE spectroscopy etc: Emission and absorption lines→ significant gas outflow w 80-260km/s (Harikane, MO+14)

(cf. Escape velocity ~250km/s; assuming a singular isothermal halo potential profile. η >0.8). \rightarrow Some fraction of the outflowing gas could escape from the halo of the galaxy, suppressing its star-formation activity.

- Progenitors of elliptical galaxies quenching star-formation by the feedback at $z\sim1??$
- $HSC/NB \rightarrow TMT$ (details e.g. Velocity fields of outflow gas).

- Identified by Subaru wide-field (1deg²) imaging survey for Lya source redshifted to z~/. Object with a large extended Lya and continuum w/o AGN. The source dubbed Himiko.
 - Keck spectroscopy clearly confirms a redshift of z=6.6 w Lya.
 - HST imaging reveal 3 continuum clumps. Triple merger, instability, or cold stream? Key for M* buildup.
 - Spitzer imaging yeilds $M^* \sim 10^{10} Mo$.
 - ALMA observations the deficit of [CII]158um line. High ionization param, high density, or low metallicity? Similar sources of major mass build up \rightarrow TMT spectroscopy for gas dynamics w abs lines.

TMT Synergies I

- Rare objects from large imaging/spec surveys.
 →TMT study.
 - Rare \rightarrow minor and unimportant? No.
 - Short time-scale 'key events' that a large fraction of objects experience.
 - Luminous early supernovae
 - AGN (duty cycle). [GRBs by γ-ray monitoring]
 - Large-scale galaxy outflow
 - Galaxy's major mass assembly

Duration time: ~ 1 day to $\sim Myr$

• Through detailed obs, TMT synergy is to understand the physical origins of such 'key events' first found by the large area surveys such as HSC and LSST.

TMT Synergies II

- One of TMT's major goals: Early light (z>~10)
- Rare apparently bright obj. from large-area surveys
 Pushing the redshift frontier

TMT Synergies II

- HST large-area imaging survey (CANDELS) \rightarrow Redshift up to $z \sim 7.5$ w a Lya line
- Hubble Frontier Fields project: deep Opt/NIR imaging on clusters (PI J. Lotz; Atek+14, Zheng+14, Coe+14...)
- These HST (+upcoming JWST) sources can be targets for probing z frontier.
- Currently, HST sources \rightarrow Keck spectroscopy for Lya (only detectable line in UV. No continuum).
- For earlier epoch $(z\sim10)$ by TMT spectroscopy? But, sensitivity/wavelength problems.
 - Faint UV continuum break detectable only up to z~8 w TMT
 - Only Lya is available in the TMT wavelength (up to K band).

Disappearing Ly α at z $\gtrsim 8$

- Lya emission is absorbed by HI in IGM at the epoch of reionization (z>6).
 - Dropping the fraction of Lya emitting to all galaxies (Stark+11, Ono+12, Pentericci+11,14, Schenker+12,14, Treu+13, Finkelstein+14)
 - Lya drop is even stronger at higher z. Accelerated evolution (e.g Konno+14).

 \rightarrow No wonder why there are no Lya emission detected at $z \ge 8$.

Low Metallicity and High Ionization State

- f[OIII]/f[OII] ratios of z~2-3 LBGs/LAEs is ~x10-100 higher than those of SDSS galaxies (Nakajima,MO +13,Nakajima&MO+13;See also Kewley+13)
- Average ionization parameter increases towards high-z, more galaxies w low metallicity and young stellar pop.
- High ionization lines in UV continuum is getting strong towards high-z. The EW of CIII]1909 is ≥10A for low mass lensed galaxies (cf. 2A for 10¹⁰⁻¹¹Mo galaxies; Siana, Stark, Richard 2014)
- Keck/MOSFIRE detection of such a high ionization lines in UV continuum from z=6-7 galaxies (Stark et al. in prep.). Dynamics/Metallicity. Not for first-generation galaxies w zero metal, but >2nd generation early galaxies.

Summary

- Landscape of 2020s' opt/NIR astronomy
 - Large-area Imaging surveys
 - Pan-STARRS
 - CTIO/DES
 - Subaru/HSC
 - LSST
 - Euclid, WFIRST-AFTA
 - Next generation spectroscopic surveys
 - LAMOST
 - Subaru/PFS (succeeding WFMOS proj.)
 - KPNO/DESI (Formerly BigBOSS)
 - Euclid (spec. only in NIR)
 - MSE (Formerly ngCFHT)
 - William Herschel/WEAVE
 - 4MOST
- TMT Synergy
 - Rare objects. SN, AGN, merger, outflow. Rare, but short time-scale/important events.
 - Early galaxy identification and characterization. Almost non-detectable Lya lines at z>8, but high-ionization metal lines.