

Project Status and Opportunities for Scientific Synergy

Patrick McCarthy GMT Project Director

TMT Community Science Meeting – July 17, 2014

Outline

- Overview of Project
- Science, Organization and Technical Status
- Scientific Outreach
- Next Steps and Project Schedule
- Synergy and Cooperation

Observatory Overview

- Seven 8.4m segments
- 25.4 m diameter pupil
- f/8.2 system 1mm/arcsec
- 360 sq. meters area
- 2 Reflections to the focus
- 20' corrected field of view
- Angular resolution:

10 mas at 1 micron

• Site: Las Campanas, Chile

NB: Cost is ~\$250,000 per night

Science & Organization

Scientific Motivation

Top-Level Science Areas

- Extra-solar planets
- Stellar Populations and Chemistry
- Galaxy Building
- Black Hole Growth
- Cosmological Physics
- First-Light & Reionization

Three Legs of the GMT Science Case:

- Discovery Space
- -Contemporary Science Goals
- Synergy

Scientific Motivation

Three Legs of the GMT Science Case:

- Discovery Space

-Contemporary Science Goals

- Synergy

GMT Institutions

Telescope

Moving mass (azimuth + elevation) = 1,261 metric tons Fixed mass (track) = 168 metric tons GMT

Telescope Optics: 3 configurations

Configuration	Field of view	Instruments
Direct Gregorian Narrow Field	10 arcmin	Wide-field spectrograph
Folded Port	3 arcmin	High-resolution spectrograph Adaptive optics instruments
Direct Gregorian Wide Field	20 arcmin	MANIFEST fiber feed

GMT

Primary Mirror Segment Production

- GMT2
 - Rear surface processing completed
- GMT3
 - Clean out of core materials completed
 - Rear surface generating to start soon
- GMT4
 - Casting date: March 2015
- GMT5
 - Glass deliveries begun

Adaptive Optics & Scientific Instruments

Picture-Snapping Machine RUBE GOLDBERG (tm) RGI 074

Adaptive Optics Strategy

Integral to the telescope: No extra reflections, no extra background

Adaptive Optics Modes:

- Natural guide star high-Strehl (95% Strehl)
- Laser guide star high sky coverage
- Ground layer correction with natural guide stars

Phasing the GMT Mirrors

- Phasing Camera senses fringes across the segments gaps in the IR
- Achieves 50nm rms precision
- Continuous observation of natural guide stars
- 97% sky coverage at the galactic poles

Simulated GMT Imaging of Exoplanets

GMT will image giant planets to ≈150 pc and Earth analogs at < 10pc

First Generation Instruments

Instrument / Mode	Capabilities	λ Range, μm	Resolution	Field of View
G-CLEF / NS, GLAO	Optical High Resolution Spectrograph / PRV	0.35 – 0.95	20 – 100K	7 x 0.7,1.2" fibers
GMACS / NS, GLAO	Wide-Field Optical Multi- Object Spectrograph	0.36 – 1.0	1,500 – 4,000 (10K w/ MANIFEST)	40-60 arcmin ²
GMTIFS / LTAO, NGSAO	NIR AO-fed IFS / Imager	0.9 – 2.5	5,000 & 10,000	10 / 400 arcsec ²
GMTNIRS / NGSAO, LTAO	JHKLM AO-fed High Resolution Spectrograph	1.2 – 5.0	50K, 100K	1.2" long-slit
MANIFEST* / NS, GLAO	Facility Robotic Fiber Feed	0.36 – 1.0		20' diameter

Instrument are mounted below the central primary mirror segment

Exception: Gravity invariant focal station on the azimuth disk

GMTIFS AO Imager & IFU

- Example Imager Slicer
- From MIRI (JWST)

Builds on successful NIFS and GSAOI instruments on Gemini

Visible Light Multi-Object Spectrograph

Figure 9-46. Detailed optical layout for the blue camera. The final element (labeled FS, for fused silica) serves as the window to the CCD Dewar.

In Conceptual Design

Phase

Texas A&M, Carnegie

R = 1,000 – 5,000 Multi-Object Spectrograph

Core Science: Galaxy evolution, First-light, Transient Sources, IGM/ICM, Dwarf Galaxy Dynamics

Site

Scientific Outreach

We propose an alternative path that will engage the U.S. community in the GMT in the years before NSF is ready to take significant actions. We want to demonstrate to the NSF, to the US community, and to potential international partners that we are open to their participation and seek to align our actions with their goals.

We have community representatives on our Scientific Advisory Committee to help shape the technical and scientific program for the GMT.....We will use our own GMT funding, at the \$250,000 scale proposed by the NSF, to enlist the participation of the broad and deep U.S. community.

Community Reps on the GMT SAC

WINTER 2013

POSTED ON JANUARY 1, 2013

GMTO Welcomes New Community SAC Members

Figure 1. New GMT community SAC members Bob Blum, Julianne Dalcanton and Megan Donahue (left to right).

GMT welcomes Bob Blum (NOAO), Julianne Dalcanton (U. Washington) and Megan Donahue (Michigan State) to the Scientific Advisory Committee. They provide fresh perspective on key scientific issues, broaden participation from the larger community, and spread the word about progress with GMT

outside the partner institutions. Their areas of interest include massive star formation, stellar populations in external galaxies, and x-ray studies of galaxy clusters.

2014 Community Science Meeting

Transient Phenomena in Astronomy & Astrophysics

Dates: October 6-8, 2014 Venue: Washington, DC Smithsonian Museum of the American Indian Banquet at Willard's Hotel

No Conference or Banquet Fee! Travel support for students & postdocs

www.gmtconference.org

2014 Science Meeting

SPEAKERS (Partial List) Rebecca Bernstein (GMTO) Josh Bloom (Berkeley)* Hsiao-Wen Chen (Chicago) Ryan Chornock (Ohio U) Brad Cenko (GSFC) Selma de Mink (STScl) George Djorgovski (Caltech) Wen-fai Fong (Harvard/Arizona) Neil Gehrels (GSFC) Chad Hanna (Perimeter)

Andy Howell (LCOGT)

Mansi Kasliwal (Carnegie)

Mario Juric (LSST)

Pat Kelley (Berkeley)

October 6-8, 2014

Emily Levesque (Colorado) Ragnhild Lunnan (Harvard) Jean-Pierre Macquart (Curtin) Ashish Mahabal (Caltech) Ben Mazin (UCSB) Brian Metzger (Columbia) Maryam Modjaz (NYU) Tara Murphy (Sydney)* Jocelyn Read (Fullerton) Armin Rest (STScI) Adam Riess (JHU) Stephan Rosswog (Stockholm) Josh Simon (Carnegie)* Nial Tanvir (Leicester)*

TRANSIENT PHENOMENA IN ASTRONOMY AND

GIANT MAGELLAN TELESCORE OPGANIZATION AND THE SMITHSONIAN INSTITUTION PR

Joh Biorn (Berkeley)* Haar War Cleff (Cheapo) Bran Chemick (Cheapo) Bran Chemick (Cheapo) Bran de Mink (CSE) George Depoysik (Caltech) George Depoysik (Caltech) Manis Jang (Caltech) Nei Genetek (CSEC) Chad Harna (Perimeter) Andy Howel (Caltech) Bran Kalawa (Caltech) Bran Kalawa (Caltech) Bran Kalawa (Caltech) Bran Manis (Caltech) Bran Manis (Caltech) Bran Mana (Caltech) Adam Reas (Stils) Adam Reas (Stils) Adam Reas (Stils) Ma Tarve (Caester)

ASTROPHYSICS

🦲 Smithsonian

Institution

SECOND ANNUAL GMT COMMUNITY SCIENCE MEETING

OCTOBER 6-8, 2014 SMITHSONIAN NATIONAL MUSEUM OF THE AMERICAN INDIAN on the National Mall in Washington D.C.

* TO BE CONFIRMED (as of 4/2014)

A NEW GENERATION OF SKY SURVEYS AND TIME-DOMAIN
EXPERIMENTS WILL SOON OPEN A NEW WINDOW ON
TRANSIENT PHENOMENA IN THE UNIVERSE.

The conference will bring together experts from around the world to discuss the state of the field. Topics includes gamma-ray bursts, supernova explosions, the discovery potential of large-scale optical and radio time-domain surveys, and electromagnetic follow-up of gravitational wave sources.

GIANT MAGELLAN TELESCOPE ORGANIZATION CIA CENTER FOR ASTROPHYSIC

Schedule

Review Process

Five independent reviews in 12 months

- Enclosure & Facilities PDR
- Adaptive Optics PDR
- Telescope System PDR
- GMT System Level PDR
- Cost and Organizational Review

System Preliminary Design Review

"Proceed to the construction phase as soon as possible"

Construction phase to start shortly

Final Procurements Remaining Adaptive Secondary Mirrors Second AO Instrument Facility Fiber Optic Feed Intermediate Procurements Remaining Primary Mirrors First Adaptive Secondary Mirrors First AO Instrument **Early Procurements** Start of Essential Infrastructure Telescope Mount Science Enclosure 4 Primary/Secondary Mirrors Summit Support Building 2 Science Instruments 2014 2016 2018 2020 2022 Construction Commissioning Close out Start Start

Synergy & Cooperation

- Deep Survey fields (UDF, CDFS) Right Ascension
- Special objects (M31, GC, LMC/SMC)
- All Sky surveys (TESS, GRBs)

ELT Instruments

Instrument Type	GMT	тмт	E-ELT
Visible Echelle	G-CLEF	HROS	CODEX
Near/Mid IR Echelle	GMTNIRS	MIRES	METIS
AO Imager and IFU	GMTIFS	IRIS	HARMONI
Near-IR MOS	NIRMOS	IRMS	
Near-IR AO Imager	Covered by IFU instrument		MICADO
Planet Imager	TIGER	PFI	EPICS
Visible MOS	GMACS	MOBIE	
Wide-Field	MANIFEST		

First Generation

Future Generation

Synergy and Cooperation

- TMT and GMT have distinct, but overlapping, sky coverage
- Some special objects can only be reached by one
- Transients and TOOs happen everywhere
- TMT and GMT have distinct, but overlapping, instrument suites
- It is easier to move astronomers and data than instruments or facilities

Time swaps and open-access coordinated by NOAO as part of the now nearly deceased "system"?

Being Better Neighbors

GMT

Being Better Neighbors

GMT

Synergy and Cooperation

- Short Term
 - Joint technical and scientific discussions
 - AO4ELT4 in California?
 - Common technology development
 - TOPTICA Laser development provides a good template
- Medium Term
 - Thinking about requirements (e.g. TT stars) for preparatory survey fields
 - Planning joint open access key-projects
- Long Term
 - Swapping nights
 - Loose coordination on instrumentation development

