

Overview of TMT Instruments and Science Flow-down

Luc Simard

Science Instruments Group Leader

TMT Science Forum Tucson, Arizona, 17-19 July 2014

TMT.INS.PRE.14.048.REL01

Science Flowdown

Motivation:

- Are all scientific requirements captured in the technical ones?
- Will the current technical requirements and architecture for TMT indeed allow it to fully realize its scientific potential?
- Invaluable in estimating the impact of various design decisions on science returns

Caveats:

- TMT is being designed as an observatory and not an experiment. Its scientific mission will evolve over its expected lifetime of fifty years
- All science cases should be taken as exemplars. It is impossible to predict what questions will dominate astronomy ten years from now. However, these exemplars must push the TMT design into as broad a discovery space as possible.

TMT Science Flowdown

Summary of TMT Science Objectives and Capabilities

Theme	Science Objectives	Observations	Requirements	Capabilities
Cosmology and Fundamental Physics (Dark energy, dark matter, physics of extreme objects, fundamental constants; DSC <u>Section 3</u>)	Mapping distribution of dark matter on large and small scales (CFP-[1,2,3,4], GAN-[3,4], GCT-1) General Relativity in new mass regime (GAN-[4,D], SSE-4) Very precise expansion rate of Universe (CFP-2) Mapping variations in constants over cosmological timescales Physics of extreme objects (SSE-[2,3,D])	Proper motions in dwarf galaxies Wide-field optical spectroscopy of <i>R</i> = 24.5 galaxies Microarcsecond astrometry Transient events lasting > 30 days High spectral resolution observations of quasars and GRBs	λ = 0.31-0.62µm, 2-2.4µm R = 1000 - 50000 Very efficient acquisition 0.05 mas astrometry stable over 10 years Field of view > 10'	SL/WFOS SL/HROS MCAO/IRIS/WIRC MCAO/ NIRES
The Early Universe (First objects, IGM at z > 7; DSC <u>Section 4</u>)	Detection of metal-free star formation in First Light objects ⁴ (GAN-2, GCT-4) Mapping topology of re-ionization (GCT-4) Structure and neutral fraction of IGM at z > 7 (CFP-1, GCT-4)	Multiplexed, spatially-resolved spectroscopy of faint objects High spectral resolution, near-IR spectroscopy	λ = 0.8 - 2.5 µm R = 3000 - 30000 $F = 3 × 10-20 \text{ ergs s}^{-1} \text{cm}^{-2} Å^{-1}$ Exposure times > 15e ³ s	MCAO/ IRMS/IRIS MOAO/ IRMOS MCAO/ NIRES
Galaxy formation and the IGM (DSC <u>Section 5</u>)	Baryons at epoch of peak galaxy formation [•] (CFP-1, GAN-1, GCT-[1,2]) 2D Velocity, SFR, extinction & metallicity maps of galaxies at $z = 5.6^{\circ}$ (CFP-3, GAN-1, GCT-[1,2]) IGM properties on physical scales < 300 kpc [•] (GAN-1, GCT-2)	Optical/near-IR multiplexed diagnostic spectroscopy of distant galaxies & AGNs Optical/near-IR multiplexed identification spectroscopy of extremely faint high redshift objects (to R~27) Spatially-resolved spectroscopy	$\lambda = 0.31 - 2.5 \ \mu m$ R = 3000-5000, 50000 Very efficient acquisition Multiplexing factor > 100	SL/WFOS SL/HROS MCAO/IRIS/IRMS MOAO/ IRMOS
Extragalactic supermassive black holes (DSC <u>Section 6</u>)	Demographics of black holes over new ranges in mass and redshift ^{\bullet} (GAN-4, GCT-3) Dynamical measurements out to $z = 0.4^{\bullet}$ (GAN-4, GCT-[1,3]) Scaling relations out to $z = 2.5$ and masses at $z > 6^{\bullet}$ (GAN-4, GCT-[1,3])	Spatially-resolved spectroscopy of galaxy cores	$\lambda = 0.8 - 2.5 \ \mu m$ R = 3000-5000 Precise positioning	MCAO/IRIS MOAO/ IRMOS
Galactic Neighborhood (DSC <u>Section 7</u>)	Abundance of oldest stars in Milky Way (CFP-4, GAN-[2,3], SSE-2) Chemical evolution in Local Group galaxies ⁴ (GAN-2) Diffusion and mass loss in stars (GAN-1, SSE-1) Resolved stellar populations out to Virgo cluster ⁴ (GAN-[2,3])	High spectral resolution optical and near-IR spectroscopy High-precision photometry in crowded fields	λ = 0.33-0.9, 1.4-2.4 µm R = 4000, 40000-90000 Photometry precision of 0.03 mag at Strehl = 0.6	SL/HROS MCAO/ NIRES MCAO/IRIS/WIRC SL/WFOS
Planetary Systems and Star Formation (physics of star formation,proto-planetary disks, exoplanets; DSC <u>Section 8</u> , <u>Section 9</u>)	Origin of mass in stars (GAN-[1,2], PSF-1) Architecture of planetary systems (PSF-[2,3,D]) Deposition of pre-biotic molecules onto protoplanetary surfaces (PSF-2) First direct detection of reflected-light Jovians (PSF-2) Characterization of exo-atmospheres (e.g., oxygen) (PSF-[3,4,D])	High-precision, crowded field photometry Diffraction-limited, high spectral resolution mid-IR spectroscopy Very high Strehl AO-assisted imaging: precise wavefront control High spectral resolution optical and near-IR spectroscopy	λ = 1 - 25 µm R = 4000, 30000-100000 Low telescope emissivity Dry site (PWV < 5 mm) Fixed gravity vector and thermal control Very efficient acquisition Contrast ratio of 10 ⁸ -10 ⁹	MCAO/IRIS MIRAO/ MIRES MCAO/ NIRES SL/HROS ExAO/PFI
Our Solar System (outer parts, surface physics and atmospheres; (DSC <u>Section</u> <u>10</u>)	Composition of Kuiper Belt Objects and comets (PSF-2) Monitoring weather, (cryo-) vulcanism and tectonic activity [●]	Spatially resolved spectroscopy of objects in solar system Transient events (hours to years)	λ = 1-10 µm R = 1000 – 100000 Non-sidereal tracking Fast response time	MCAO/IRIS/WIRC MCAO/ NIRES MIRAO/ MIRES

4

Fundamental Physics and Cosmology

Science objectives:

- Dark matter on large and small scales
- Kerr spacetime in unexplored mass regime
- Dark energy density versus cosmic time
- Variations of fundamental constants over cosmological timescales

Observations:

- Wide-field spectroscopy (SL/WFOS)
- Transient events lasting > 30 days
- High-res observations of quasars/AGNs
- Proper motions in dwarf galaxies and microarcsec astrometry (MCAO/IRIS/WIRC)

- $\lambda = 0.31-0.62\mu m$, 2-2.4 μm
- R = 1000 50,000
- Very efficient acquisition
- 0.05 mas astrometry stable over 10 years
- SL Field of view = 20'
- AO field of view = 15" (w/ stable PSF)

Formation of Stars and Planets

Science objectives:

- Origin of stellar masses
- Architecture of planetary systems
- Pre-biotic molecules in disks
- First direction of reflected-light Jovians
- Exoplanetary atmospheres (oxygen)

Observations:

- High precision, crowded field photometry (MCAO/IRIS/WIRC)
- Very high Strehl ratio imaging (ExAO/PFI)
- Diffraction-limited, high-resolution, mid-IR (MIRAO/MIRES)
- High-res optical and IR spectroscopy

- λ = 1-25 μm
- R = 4000,30000-100,000
- Low telescope emissivity and PWV < 5 mm
- Fixed gravity vector
- Strehl ratio > 0.9 and contrast ratio of 10⁸⁻⁹

From Science to Requirements: WFOS Observing Programs

	White dwarfs	Resolved populations	Dark matter mapping	IGM Tomography I	IGM Tomography II	High-z escape fraction
Slits/mask	200	380	100-750	40	70	50
Masks/barrel/night	2	2.5,7	6	2	10	2
Slit width [arcsec]	0.6	0.8	0.6	0.75	0.75	0.75
Number of nights required	3	28	15	40	100	20
Typical integration time/exposure [s]	1800	1200	1200	1800	1800	1800
Typical integration time/mask [ks]	15	9,3	3.6	22	3.6	200
Resolution (blue arm/red arm)	2000	5000	2000/5000	5000	1000	1000
Number of dichroics needed	1	1	1	2	1	1
Good wavelength for dichroic split [Å]	5800	6000	6000	4300/5000	5600	5500
Minimum wavelength (blue arm/red arm) [Å]	3400	4600/7900	3700/8300	3400/4300	3200/5600	5700
when second dichroic is used:	-		_	4400/5000	_	5700
Maximum wavelength (blue arm/red arm) [Å]	5800	5200/9000	5400/8800	4300/5400	5600/10300	8775
when second dichroic is used:	_		_	5000/6400	-	5700
Seeing FWHM required [arcsec]	0.7	0.8	0.8	0.8	0.8	0.75
Needs pre-imaging?	~	~	~			
Calibrate with sky lines?					~	~
Need very precise flux calilbration?		~	~			
Needs very precise sky subtraction?		~	~	~	~	~
Benefits from Nod & Shuffle?		~	~	~	~	~
Best done in a queue?	~		~	~	~	~
Uses blue and red arms at same time?	~	~	~	~	~	
Big benefits from GLAO?	~	~	~	~	~	~
Big benefits from SLGLAO?	~	~	~			
Care about LGS beacon positions?	~		~			
Benefits from quick switch of dichroics?				~	~	~
Efficiency a strong function of dichroic split?				~	~	~
Hurt by non-contiguous coverage?	~	~	~			
Synergistic with JWST?		~		~	~	~
Synergistic with ALMA?				~	~	

7

Requirement #	Description	Requirement
[REQ-1-ORD-3950]	Wavelength Range	0.31 – 1.0µm
[REQ-1-ORD-3955]	Image quality: Imaging	\leq 0.2 arcsec FWHM over any 0.1µm wavelength interval (including contributions from the telescope and the ADC at z=60°)
[REQ-1-ORD-3960]	Image quality: Spectroscopy	≤ 0.2 arcsec FWHM at every wavelength
[REQ-1-ORD-3965]	Field of View	40.5 arcmin ² . The field need not be contiguous.
[REQ-1-ORD-3970]	Total Slit Length	≥ 500 arcseconds
[REQ-1-ORD-3975]	Spatial Sampling	< 0.15 arc-sec per pixel, goal < 0.1 arc-sec
[REQ-1-ORD-3980]	Spectral Resolution	R = 500-5000 for a 0.75 arc-sec slit, 150-7500 (goal)
[REQ-1-ORD-3985]	Throughput	\geq 30% from 0.31 – 1.0µm, or at least as good as that of the best existing spectrometers
[REQ-1-ORD-3990]	Sensitivity	Spectra should be photon noise limited for all exposure times >60 sec. Background subtraction systematics must be negligible compared to photon noise for total exposure times as long as 100 Ksec. Nod and shuffle capability in the detectors may be desirable
[REQ-1-ORD-3995]	Wavelength Stability	Flexure at a level of less than 0.15 arc-sec at the detector is required.

~	Science Flowdown Matrix Parameters			
	Domain	Para	meter Name	
	Configuration	Ob	serving Mode	
THIRTY METER TELESCOPE		Wa	velength range	
		Spe	ctral Resolution	
	Spectral Parameters	Flux/radial velocity	Relative / absolute Precision Stability timescale	
		Imaga quality	Resolution	
		inage quality	Strehl ratio / contrast ratio	
			Total areal coverage	
	Spatial Parameters	Geometry	Field of view per observation	
	Spallar Faramelers		Field overlap	
			Relative / absolute	
		Astrometry	Precision	
			Stability timescale	
	Multiplexing	\$	Sample size	
	Multiplexing	Numb	er of observations	
	Tracking		Rate	
			Baseline	
	Synoptic Signature		Cadence	
			Duration	

Science Flowdown Matrix -A small subsection

Relative/ absolute	As Precision (mas)	stability Stability timescale (years)
Relative/ absolute	Precision (mas)	Stability timescale (years)
Relative ⁽²⁰⁾	100 1#0	
Relative ¹²²⁾	2 122)	
_	Relative ¹²²	Relative ¹²² 100 ¹²²

Science Flowdown Matrix -A small subsection

		Image Quality			Spatial Parameters			Actromatry		
Science Program	Resolution (mas)	Strehl (S) / Contrast (C) ratio	SRD/ORD Requirement(s)	Total Areal Coverage (sq. arcmin)	Field of view / observation (sq. arcmin)	Field overlap (0-1)	SRD/ORD Requirement(s)	Relative/ absolute	Precision (mas)	Stability timescale (years)
Multiplexed spectroscopy of distant galaxies: rest-frame optical DSC 5.4	200		SRD-0070, 0075, 0100, 0105, 0110, 0115, 0120, 0145, [0405-0420], [0455-0470], [0565-0580], 1115	> 350	3.5	0.00	SRD-[0220- 0230], 0250, 0260, 0265, 0805, 0815, 1105, 1120, 1140, 1305, 1315, 1320, 1330			
			SRD-0045, 0070,				SRD-[0220-			
Spatial dissection of forming The TM	Spatial dissection of forming DSC 5.5 Updated to reflect changes to existing science					Relative ¹⁹³⁵	100 1800			
pi	Uyra	115 and				162				
IGM: Core samples during galaxy DSC 5.6	800 107		[0565-0580], 1220, 1225, 1230, 1275, 1715, 1720	4 x 4032	40.3 ***	0.01	1205, 1230, 1705, 1710, 1720			
Epoch of galaxy formation in 3D DSC 5.7	800 1175		SRD-0070, 0110, 0120, 0145, [0455-0470], [0565-0580], 1220, 1225, 1230, 1275	4 x 4032	40.3 ¹¹⁷⁾	0.01	SRD-0050, 0220, 0225, 0250, 0255, 0265, 1205, 1230			
SMBHs in nearby galactic nuclei DSC 6.1	10 173	S = 0.5 ¹⁷⁵	SRD-0045,0070, 0075,0100, 0105,0110, 0115,0120, 0145,[0405- 0420],[0455- 0470],[0565- 0580],[0820- 0830],1015, 1025,1030, 1035	< 10.2 ⁽⁷⁾	< 0.03 ⁴ }	0.00	SRD-[0220- 0230], 0250, 0260, 0265, 0890, 1005, 1010, 1030, 1035	Relative ¹²²⁾	2 ¹²²⁾	

Other Top-Level Observatory Requirements

- Instrument Systems:
 - Target acquisition sequences
 - Access and servicing
- Observatory Systems:
 - Nasmyth structures
 - Mass budget
 - Surface area and height
 - M1 airflow
 - Cooling systems
 - Vibrations must be minimized
 - Four thermal environments: T=10C, -30C, 77K and < 50-60K</p>
 - Cranes

TMT.INS.PRE.14.048.REL01

Observatory is being designed as an "endto-end" system to maximize performance

Requirements:

- Wavelength range, field of view/ slit length, spectral resolution
- Impact:
 - Multiplexing:
 - IGM tomography
 - Topology of reionization

Galaxy velocity fields from SINS survey

Rest-frame UV and optical properties of distant galaxies

Discovery:

- Identification and diagnostic spectroscopy of transient phenomena (e.g., supernovae/GRBs/tidal flares)
- Metal-free star formation in First Luminous Objects
- Pre-biotic molecules

Observing Efficiency

Requirements:

- Acquisition, calibration, downtime, fast response and operating weather conditions
- Impact:
 - Large programs (# observations > 500)
 - IGM tomography
 - Jovian exoplanets

- Doppler detection of planetary systems
- Time-critical programs
 - Supernovae/GRBs/...
 - Weather and volcanic activity in the outer solar system
 - Exoplanetary transits

TMT as an Agile Telescope: Catching The "Unknown Unknowns"

TMT target acquisition time requirement is 5 minutes (i.e., 0.0034 day)

Tightly sequenced observations will be key

Source: Figure 8.6, LSST Science Book

From Science to Subsystems

From Science to Subsystems

From Science to Subsystems

Instrument	Field of view / slit length	Spectral resolution	λ (µm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4."4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	<i>R</i> = 4660 @ 0.16″ slit	0.95-2.45	MCAO with NFIRAOS
Multi-IFU imaging spectrometer (IRMOS)	3" IFUs over >5' diameter field	2000-10000	0.8-2.5	ΜΟΑΟ
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3" slit length 10" imaging	5000-100000	8-18 4.5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1" outer working angle, 0.05" inner working angle	R≤100	1-2.5 1-5 (goal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5″ slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0∥(goal)	MCAO with NFIRAOS

Instrument	Field of view / slit length	Spectral resolution	λ (µm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4."4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	<i>R</i> = 4660 @ 0.16″ slit	0.95-2.45	MCAO with NFIRAOS
Multi-IFU imaging spectrometer (IRMOS)	3″ IFUs over >5' diameter field	2000-10000	0.8-2.5	MOAO
Mid-IR AO-fed Echelle Spectrometer (MIRES)	^{3″ sli} 10″ i Visible	, Seeing-Li	imited	MIRAO
Planet Formation Instrument (PFI)	1″ outer working angle, 0.05″ inner working angle	R≤100	1-2.5 1-5 (goal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer	2″ slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5″ slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
'Wide''-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0∥goal)	MCAO with NFIRAOS

Instrument	Field of view / slit	Spectral resolution	λ (µm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4.″4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	<i>R</i> = 4660 @ 0.16″ slit	0.95-2.45	MCAO with NFIRAOS
Multi-IFU imaging spectrometer (IRMOS)	3″ IFUs over >5' diameter field	2000-10000	0.8-2.5	MOAO
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3" slit length 10" imaging	5000-100000	8-18 4 5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1" out angle, 0.05" inner working angle	IR, AO-ass	1-5 (goal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5″ slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0∥(goal)	MCAO with NFIRAOS

Instrument	Field of view / slit length	Spectral resolution	λ (μm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4."4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	R = 4660 @ 0.16″ slit	0.95-2.45	MCAO with NFIRAOS
Multi-IFU imaging spectrometer (IRMOS)	3" IFU High	-Contrast A	NO	MOAO
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3" slit length 10" imaging	5000-100000	8-18 4.5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1" outer working angle, 0.05" inner working angle	R≤100	1-2.5 1-5 (goal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5" slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0 <mark>(</mark> goal)	MCAO with NFIRAOS

Instrument	Field of view / slit length	Spectral resolution	λ (µm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4."4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deploy Mid-I	R AO-ass	isted	MCAO with NFIRAOS
Multi-IFU imaging spectrometer	3" IFU			MOAO
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3" slit length 10" imaging	5000-100000	8-18 4.5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1" outer working angle, 0.05" inner working angle	R≤100	1-2.5 1-5 (goal)	10 ^ª contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5" slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0 <u>(</u> goal)	MCAO with NFIRAOS

TMT First-Light Instrument Suite

Instrument	Field of view / slit	Spectral resolution	λ (µm)	Comments
InfraRed Imager and Spectrometer (IRIS)	< 4.″4 x 2".25 (IFU) 16".4 x 16".4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAO with NFIRAOS
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	<i>R</i> = 4660 @ 0.16″ slit	0.95-2.45	MCAO with NFIRAOS
Multi-IFO imaging spectrometer (IRMOS)	3" IFUs over >5' diameter field	2000-10000	0.8-2.5	ΜΟΑΟ
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3" slit length 10" imaging	5000-100000	8-18 4.5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1" outer working angle, 0.05" inner working angle	R≤100	1-2.5 1-5 (goal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit length	20000-100000	1-5	MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5″ slit length	50000	0.31-1.0 0.31-1.3(goal)	SL
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0 (goal)	MCAO with NFIRAOS

Selection of First-Light Instruments

- Our first-light instruments were selected at the December 2006 SAC meeting in Vancouver
- This downselect was very successful because
 - It was primarily science-driven, but it also paid attention to technical readiness, cost and schedule
 - Extensive information from the instrument feasibility studies
 - SAC did a lot of "groundwork" ahead of the December meeting
- Balance between fundamental observing modes: seeinglimited vs AO, visible versus infrared, and imagers vs spectrometers
- Workhorse capabilities and synergy

Selection of First-Light Instruments

- Our first-light instruments were selected at the December 2006 SAC meeting in Vancouver
 - his downsoloct was vory successful because

Selection reaffirmed by TMT SAC following partner-wide instrument workshop in 2011

- Balance between fundamental observing modes: seeinglimited vs AO, visible versus infrared, and imagers vs spectrometers
- Workhorse capabilities and synergy

Strong Overlap Between Science and Instrumentation

Synergy with Space/IR and ALMA

(TMT capabilities are shown in red)

TMT/MIRES will have comparable spectral line sensitivity (NELF) to infrared space missions with a much higher spectral resolution The angular resolution of TMT instruments nicely complements that of JWST and ALMA

TMT is a "near IR ALMA"!

First Light Instrumentation on the Telescope

M2 M3 InfraRed Multislit Spectrometer (IRMS) Wide Field Optical Spectrometer (WFOS) NFIRAOS Third port future instrument 2 Versenan M1 InfraRed InfraRed Imaging Spectrograph (IRIS)

Science instruments mounted on Nasmyth platforms (fixed gravity vector)

An ELT Instrumentation "Equivalence Table"

Type of Instrument	GMT	ТМТ	E-ELT
Near-IR, AO-assisted Imager + IFU	<u>GMTIFS</u>	<u>IRIS</u>	<u>HARMONI</u>
Wide-Field, Optical Multi-Object Spectrometer	<u>GMACS</u>	<u>MOBIE</u>	OPTIMOS
Near-IR Multislit Spectrometer	NIRMOS	<u>IRMS</u>	
Deployable, Multi-IFU Imaging Spectrometer		IRMOS	EAGLE
Mid-IR, AO-assisted Echelle Spectrometer		MIRES	METIS
High-Contrast Exoplanet Imager	TIGER	PFI	EPICS
Near-IR, AO-assisted Echelle Spectrometer	GMTNIRS	NIRES	SIMPLE
High-Resolution Optical Spectrometer	<u>G-CLEF</u>	HROS	CODEX
"Wide"-Field AO Imager		WIRC	MICADO

30

Building Instrument Partnerships

- Each TMT instrument will be built by a multi-institution consortium with industrial partners
- Strong interest from all partners in participating in instrument projects:
 - Primarily driven by science interests of their respective science communities
 - Large geographical distances and different development models
 - Broad range of facilities and capabilities
- Significant efforts are already under way to fully realize the exciting potential found within the TMT partnership
- Goal is to build instrument partnerships that make sense scientifically and technically while satisfying partner aspirations

TMT Global Participants – **First Light Science Instruments**

 \mathcal{B}

THIRTY METER TELESCOPE

TMT

NFIRAOS: First-Light MCAO System

IRIS and IRMS mounted on NFIRAOS

Cut-Away View of **IRIS** Assembly

35

The IRIS Focal Plane: Imager + 2 IFUs + 3 Guide Stars

Concentric integral field Imager spectrographs 16".4×16".4 field (on-axis) 18" off-axis w/ 0".004 pixels Wavelength range = (JHK + Narrow-bands) 0.84 -2.4µm Spectral Resolution = 4000 60 2 Coarse Scales (Slicer) 45×90×~2000 elements 1".125×2".25@0".025 **Three Probe Arms** 4" FoV w/ 2".25×4".5@0".050 0".004 pixels (control plate scale 2 Fine Scales (Lenslet) 112×128×500 elements and astrometry) 0".45×0".64@0".004 1".0×1".15@0".009 TMT.INS.PRE.14.048.REL01

TMT.INS.PRE.14.048.REL01

TMT.INS.PRE.14.048.REL01

MOBIE Science Field Geometry

THIRTY METER TELESCOPE

Multi-object mask making simulation

MOBIE Schematic View

MOBIE Echellette Design:TMTSurvey and Diagnostic Spectroscopy

MOBIE can trade multiplexing for expanded wavelength coverage in its higher dispersion mode

MOBIE on TMT

InfraRed Multi-slit Spectrometer (IRMS) (aka Keck/MOSFIRE on TMT)

THIRTY METER TELESCOPE

TM1

MOSFIRE at Keck

TIVIT.INO.FILE. IT.OTO.I LEO

IRMS Slit Unit & Field

CSEM configurable slit unit

- Slits formed by opposing bars
- Up to 46 slitlets
- Reconfigurable in ~3 minutes

IRMS on NFIRAOS

Instrument mass = 2.5 T Rotator module mass = 1.1T Support Structure mass = 2.3T

Total mass = 5.9T

NFIRAOS: Final Design Phase started in April 2014

 IRIS: Preliminary Design Phase started in April 2013 and scheduled for completion in December 2014

MOBIE:

- Conceptual Design Handover Workshop held in October 2013
- A short "mini-study" phase with participants from across the TMT partnership now getting underway and scheduled for completion in December 2014
- "delta" conceptual design phase is scheduled for January-July 2015

IRMS:

- An initial study showed IRMS to be a viable option
- A "mini-study" phase will start in September 2014 followed by a "delta" conceptual design phase in April-October 2015

Summary

- TMT science programs span the full cosmic timeline:
 - From the "Dark Sector" and First Light
 - Including our own Solar System!
- TMT has a powerful suite of planned science instruments and AO systems that will make the Observatory a worldclass, next-generation facility
- There are many opportunities for all TMT partners
- We all look forward to TMT's first light in 2023!

Acknowledgments

The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, and the Department of Science and Technology of India and their supported institutes. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.