

## **Planetary Nebulae**

- Descendents of low- and intermediate-mass stars ( $\leq 8-10 M_{\odot}$ )
- Ubiquitous in the universe; exist in all types of galaxies
- Narrow and bright emission lines, e.g., [O III]  $\lambda$ 5007, H $\alpha$
- Excellent tracers of properties of the host galaxies
  - Chemistry
  - Kinematics
  - stellar populations
- Indicator of properties of the pristine universe

#### Planetary Nebulae discovered in the Local Group before 2006

Magrini (2006)

| Name           | Т              | $\log L_V$ | D<br>[kpc] | N.<br>PNe | Reference                               | N.<br>S.         | Reference                                |
|----------------|----------------|------------|------------|-----------|-----------------------------------------|------------------|------------------------------------------|
| M31            | $\mathbf{Sb}$  | 10.43      | 760        | 2615      | Merrett et al. 2006                     | 30               | Jacoby & Ciardullo 1999                  |
| M33            | $\mathbf{Sc}$  | 9.51       | 795        | 152       | Ciardullo et al. 2004                   | 26               | Magrini et al. 2003A                     |
| LMC            | Ir             | 9.35       | 50         | 1000      | Reid & Parker 2005                      | 141              | Leisy & Dennefeld 2006A                  |
| $\mathbf{SMC}$ | Ir             | 8.79       | 59         | 132       | Jacoby 2005                             | 42               | Leisy & Dennefeld 2006A                  |
| M32            | E2             | 8.55       | 760        | 46        | Merrett et al. 2006                     | 14               | Richer & McCall 2002                     |
| NGC205         | $\mathbf{Sph}$ | 8.51       | 760        | 35        | Corradi et al. 2005                     | 13               | Richer & McCall 2002                     |
| IC10           | Ir             | 8.47       | 660        | 16        | Magrini et al. 2003B                    | -                | Magrini et al. 2006                      |
| NGC6822        | dIr            | 8.35       | 500        | 17        | Leisy et al. 2005                       | 17               | Leisy et al. 2006B,                      |
|                |                |            |            |           |                                         |                  | Hernandez & Peña 2006                    |
| NGC185         | $\mathbf{Sph}$ | 8.19       | 660        | 5         | Corradi et al. 2005                     | 5                | Richer & McCall 2002                     |
| IC1613         | dIr            | 8.07       | 725        | $^{2}$    | Magrini et al. 2005B                    | -                | Corradi et al. 2006                      |
| NGC147         | $\mathbf{Sph}$ | 7.99       | 660        | 9         | Corradi et al. 2005                     | 8                | Gonçalves et al. 2006                    |
| WLM            | dIr            | 7.61       | 925        | 1         | Magrini et al. 2005B                    | · <del>.</del> . |                                          |
| Sagitt.        | dSp            | 7.47       | 24         | 4         | Zijlstra et al. 2006                    | 4                | Zijlstra et al. 2006                     |
| Fornax         | dSp            | 7.19       | 138        | 1         | Danziger et al. 1978                    | 1                | Danziger et al. 1978                     |
| Pegasus        | dIr            | 6.87       | 760        | 1         | Jacoby & Lesser 1981                    | -                |                                          |
| LeoA           | dIr            | 6.55       | 690        | 1         | Magrini et al. 2003B                    | 1                | van Zee et al. 2006                      |
| NGC3109        | dIr            | 8.27       | 1330       | 13        | Leisy et al. 2006B,                     | 12               | Leisy et al. 2006B,                      |
| SextansB       | dIr            | 7 63       | 1600       | ĸ         | Pena et al. 2006<br>Magrini et al. 2002 | 5                | Pena et al. 2006<br>Magrini et al. 2005A |
| Sextanso       | dIr            | 7.03       | 1390       | 1         | Magrini et al. 2002                     | 1                | Magrini et al. 2005A                     |
| SextansA       | an             | 1.07       | 1520       | 1         | magriii et al. 2005D                    | 1                | magnini et al. 2005A                     |

| Name              | Type           | Mv    | Dist. | PNe  | PNe  | Ref (old)             | Ref (new)                                                  |
|-------------------|----------------|-------|-------|------|------|-----------------------|------------------------------------------------------------|
|                   |                |       | [kpc] | 2006 | 2011 | 2006                  | 2011                                                       |
|                   |                |       |       |      |      |                       |                                                            |
| M31               | $\mathbf{Sb}$  | -21.2 | 785   | 2766 | 2766 | Merrett 2006          |                                                            |
| Milky Way         | $\mathbf{Sbc}$ | -20.9 |       | 2400 | 3000 | Acker et al. 1996     | Parker <i>et al.</i> 2006;<br>Miszalski <i>et al.</i> 2008 |
| M33               | Sc             | -18.9 | 795   | 152  | 152  | Ciardullo et al. 2004 |                                                            |
| LMC               | Ir             | -18.5 | 50    | 277  | 740  | Jacoby 2006           | Reid 2006a,b, 2011 <sup>1</sup>                            |
| SMC               | Ir             | -17.1 | 59    | 105  | 139  | Jacoby et al. 2002    | Jacoby 2006                                                |
| M32 (NGC221)      | $\mathbf{E2}$  | -16.5 | 760   | 30   | 45   | Ciardullo et al. 1989 | Sarzi et al. 2011                                          |
| NGC205            | $\mathbf{Sph}$ | -16.4 | 760   | 35   | 35   | Corradi et al. 2005   |                                                            |
| IC10              | Ir             | -16.3 | 660   | 16   | 27   | Magrini et al. 2003   | Kniazev, et al. 2008                                       |
| NGC6822           | dIr            | -16.0 | 500   | 17   | 26   | Leisy et al. 2005     | ${\rm HM}^2 \ et \ al. \ 2009$                             |
| NGC185            | $\mathbf{Sph}$ | -15.6 | 660   | 5    | 5    | Corradi et al. 2005   |                                                            |
| IC1613            | dIr            | -15.3 | 725   | 3    | 3    | Magrini et al. 2005   |                                                            |
| NGC147            | $\mathbf{Sph}$ | -15.1 | 660   | 9    | 9    | Corradi et al. 2005   |                                                            |
| WLM               | dIr            | -14.4 | 925   | 1    | 1    | Magrini et al. 2005   |                                                            |
| Sagittarius       | dSph/E7        | -13.8 | 24    | 3    | 4    | Zijlstra 1999         | Zijlstra et al. 2006                                       |
| Fornax (E351-G30) | dSph           | -13.1 | 138   | 1    | 2    | Danziger et al. 1978  | Larsen 2008                                                |
| Pegasus (DDO 216) | dIr            | -12.3 | 760   | 1    | 1    | Jacoby et al. 1981    |                                                            |
| Leo I (DDO 74)    | dSph           | -11.9 | 250   |      |      |                       |                                                            |
| Andromeda I       | IDsPH          | -11.8 | 810   |      |      |                       |                                                            |
| Andromeda II      | dSph           | -11.8 | 700   |      |      |                       |                                                            |
| Leo A             | dIr            | -11.5 | 690   | 1    | 1    | Magrini et al. 2003   |                                                            |
| DD 210            | dIr            | -11.3 | 1025  |      |      |                       |                                                            |
| Sag DIGD          | dIr            | -10.7 | 1300  |      |      |                       |                                                            |
| Pegasus II        | dSph           | -10.6 | 830   |      |      |                       |                                                            |
| Pisces (LGS3)     | dIr            | -10.4 | 810   |      |      |                       |                                                            |
| Andromeda V       | dSph           | -10.2 | 810   |      |      |                       |                                                            |
| Andromeda III     | dSph           | -10.2 | 760   |      |      |                       |                                                            |
| Leo II (Leo B)    | dSph           | -10.1 | 210   |      |      |                       |                                                            |

### Planetary Nebulae discovered in the Local Group (2006–2011)

| Name                          | Type           | Mv    | Dist.<br>[kpc] | PNe<br>2006 | PNe<br>2011 | Ref (old)<br>2006   | Ref (new)<br>2011   |
|-------------------------------|----------------|-------|----------------|-------------|-------------|---------------------|---------------------|
|                               |                |       |                |             |             |                     |                     |
| Cetus*                        | dSph           | -9.9  | 755            |             |             |                     |                     |
| Phoenix                       | dSph           | -9.8  | 395            |             | 1           |                     | Saviane et al. 2009 |
| Sculptor (E351-G30)           | dSph           | -9.8  | 87             |             |             |                     |                     |
| Cassiopeia (An VII)           | dSph           | -9.5  | 690            |             |             |                     |                     |
| Tucana                        | dSph           | -9.6  | 870            |             |             |                     |                     |
| Sextans                       | dSph           | -9.5  | 86             |             |             |                     |                     |
| Carina (E206-G220)            | dSph           | -9.4  | 100            |             |             |                     |                     |
| Draco (DDO 208)               | dSph           | -8.6  | 79             |             |             |                     |                     |
| Ursa Minor                    | dSph           | -8.5  | 63             |             |             |                     |                     |
| Canes Venatici I <sup>*</sup> | dSph           | -7.8  | 220            |             |             |                     |                     |
| Leo T <sup>*</sup>            | dSph           | -7.1  | 420            |             |             |                     |                     |
| Ursa Major*                   | dSph           | -6.7  | 100            |             |             |                     |                     |
| Canis Major Dwarf*            | Irr            |       | 7.6            |             |             |                     |                     |
| Canes Venatici II*            | dSph           | -5.8  | 150            |             |             |                     |                     |
| Bootes*                       | dSph           | -5.8  | 60             |             |             |                     |                     |
| Ursa Major II*                | dSph           | -3.8  | 30             |             |             |                     |                     |
| LG outskirts                  |                |       |                |             |             |                     |                     |
| GR8                           | dSph           | -11.8 | 2200           | 0           |             | Magrini et al. 2005 |                     |
| Antlia                        | dSph           | -15.8 | 1330           |             |             |                     |                     |
| NGC3109                       | dIr            | -15.8 | 1330           | 18          | 20          | Corradi et al. 2006 | Peña et al. 2007    |
| Sextans B                     | dIr            | -14.3 | 1600           | 5           | 5           | Magrini et al. 2000 |                     |
| Sextans A                     | dIr            | -14.2 | 1320           | 1           | 1           | Magrini et al. 2003 |                     |
| EGB0427 + 63                  | $\mathbf{sIr}$ | -10.9 | 2200           |             |             |                     |                     |

## Planetary Nebulae discovered in the Local Group (2006–2011)

#### What can we learn from Local Group PNe in TMT era? – A few science cases

- Discovery of more (faint) PNe out to ~30 Mpc
- Abundance gradients (O/H) of galaxies
- Star formation histories in different types of galaxies (in combination with H II region abundances)
- Investigation of substructures in spiral galaxies
- Two basic problems in nebular astrophysics

## Substructures in spiral galaxies – e.g., M31



# Substructures in the halo and outer disk of M31

– Discovery of the Southern Giant Stream

- Giant stream of metal-rich stars
  - Photometric survey with INT/WFC by Ibata et al. (2001);
  - Spatial (surface density) distribution of the RGB stars;
  - Enhanced metallicity in the stream relative to the 'normal' M31 halo population;
  - The stream might be the debris stripped from M32 and/or NGC205.



## **Origin of the Northern Spur and Giant Stream**

- Connected with each other?

- Observations (photometry)
  - Deep panoramic survey (25 deg<sup>2</sup>) by Ferguson et al. (2002);
  - density and color distribution of RGB stars;
  - origin of the Southern Stream could be M32;
  - the Northern Spur: distortion (i.e. stellar warps) and disruption of the outer disk due to close passage of a satellite;
  - identity of the perturber was unknown.



## **Origin of the Northern Spur and Giant Stream**

- Connected with each other?

Merrett et al. (2006)

2

- Observations (photometry and slitless spectroscopy) and modeling
  - A stellar orbit (Merrett et al. 2003) connects the Southern Stream to Northern Spur;
  - based on the kinematics of  $\sim 20$  PNe;
  - No need to invoke the stellar warp.

0

X (degrees)

600

400

200

(km s<sup>-1</sup>)

>

-200

-400

-600

-2

\_ 1



#### **Origin of the** *Northern Spur* - The spatial and kinematic distribution of M31 PNe



*Note:* The figure was produced based on Fig. 2 of Merrett et al. (2003); PNe (~3000) data are from Merrett et al. (2006).

#### Spectrum obtained at Palomar 5m



#### Spectrum obtained at Palomar 5m (3 hr exposure)



## Abundances

N/O versus O/H

**Oxygen gradient** 



Fang et al. (2013)

#### What can we learn from Local Group PNe in TMT era? - A few science cases

- Discovery of more (faint) PNe out to ~30 Mpc
- Abundance gradients (O/H) of galaxies
- Star formation histories in different types of galaxies (in combination with abundances of H II regions and giant stars if available)
- Investigation of substructures in spiral galaxies
- Two basic problems in nebular astrophysics

#### Emission lines used for nebular analysis; CELs & ORLs/continua







#### **CELs versus ORLs/continua** Two basic problems in nebular astrophysics: the two discrepancies





#### **CELs versus ORLs/continua Intriguing phenomena related to the two discrepancies**



#### Interpretations

- Explanations of the discrepancies
  - T<sub>e</sub> fluctuations and/or N<sub>e</sub> inhomogeneities; chemical imhomogeneities
    (Peimbert 1967, 1971; Rubin 1989; Viegas & Clegg 1994; Stasińska et al. 1994).



- Most recently:  $\kappa$ -distributed electrons (Nicholls et al. 2012).

#### Interpretations

- Explanations of the discrepancies
  - T<sub>e</sub> fluctuations and/or N<sub>e</sub> inhomogeneities; chemical imhomogeneities
    (Peimbert 1967, 1971; Rubin 1989; Viegas & Clegg 1994; Stasińska et al. 1994).
  - Most recently:  $\kappa$ -distributed electrons (Nicholls et al. 2012).

The bi-abundance nebular model (Liu et al. 2000): A cold (< 1000 K), metal-rich (probably H-deficient) plasma component in PNe (probably also H II regions).</li>

#### • The bi-abundance (two-component) nebular model

- CELs from the **hot** ambient gas; ORLs from the **cold**, metal-rich component.
- So far, explains the wide ranges of observations (IR-UV).
- However, its origin is unclear; its lifetime is a problem.
- First need to know  $T_{\rm e}$ ,  $N_{\rm e}$ , X/H, mass, etc.



#### Modeling – A two-component nebular model

 3D photoionization modeling of NGC6153 (Yuan et al. 2011)
 ADF(O<sup>2+</sup>/H<sup>+</sup>) ≈ 10



0.0



HST/WFPC2 images of NGC6153 (Upper)



Projected monochromatic images of the 3D model (Mid)





- An international (Russia + Spain + Germany) space telescope to be launched in 2017
- To guarantee observational access in UV to astronomers after the HST
- A 1.7m aperture telescope
- High and intermediate resolution spectroscopy, slitless low-resolution spectroscopy, and deep UV imaging
- A five-year mission and an extension of five years



World Space Observatory - UltraViolet

Observatorio Espacial Mundial - Ultravia

## *World Space Observatory – UltraViolet (WSO-UV)*

- Instruments
  - Imaging and Slitless Spectrograph Instrument for Surveys, **ISSIS**: 1150-1750Å (FUV), 1850-3200Å (NUV, *R* ~500)
  - Far-UV echelle spectrograph, VUVES: 1020-1720Å (*R*~55000)
  - Near-UV echelle spectrograph, UVES:  $1740-3100\text{\AA}$  ( $R \sim 50000$ )
  - Long slit spectrograph, LSS: 1020-3200Å (*R*~1500–2500)

#### • *WSO-UV*/ISSIS versus *HST*/ACS/SBC:

|                                  | FUV Channel           | NUV Channel           |
|----------------------------------|-----------------------|-----------------------|
| Spectral range                   | 1150-1750 Å           | 1850-3200 Å           |
| Peak throughput (imaging)        | 1400 Å                | 2300 Å                |
| Field of View: imaging           | 70 arcsec x 75 arcsec | 70 arcsec x 75 arcsec |
| Field of View: spectroscopy      | 36 arcsec x 65 arcsec | 36 arcsec x 65 arcsec |
| Detector type                    | CsI MCP               | CsTe MCP              |
| Detector diameter                | 40 mm                 | 40 mm                 |
| Detector format (equivalent)     | > 2048 x 2048 pix     | > 2048 x 2048 pix     |
| Pixel scale                      | 0.036 arcsec          | 0.036 arcsec          |
| Scale ratio                      | < 7 %                 | < 7 %                 |
| Number of reflections            | 4                     | 4                     |
| Temporal resolution              | 40 ms                 | 40 ms                 |
| Slitless spectroscopy resolution | R=500                 | R=500                 |

**Throughput of ISSIS** 





### Summary

- TMT spectroscopic surveys of extragalactic PNe
- Tackle with the basic problems in nebular astrophysics using TMT
- A synergy between TMT and *WSO-UV*

