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Star formation: 

What determines stellar 
(sub-stellar) mass?	
  



IMF	
  
  Counting individual 

stars in young clusters 
  In our Galaxy 

 Mostly “Universal” 

 Deviation suggested 
at the center of MW 

  Need measurements 
under various physical 
environments 
 metallicity 

 cloud gas density 

 external pressure 	
  
 cluster density Bastian (2010)	
  



IMF in distant regions in MW	
  
  IMF covering 

characteristic mass 
(<<1 M) with IRIS 
spectroscopy 

  Photometric 
sensitivity allows us to 
go down to brown-
dwarf regime at the 
galactic center 

Model Kp-band luminosity function 
(Lu et al. 2013)	
  



Beyond our Galaxy	
  

Radius 
(Re)	
  

Limiting 
K mag	
  

Limiting 
mass 
(M)	
  

1.0 18.9 65	
  
2.0	
   22.3	
   3	
  
5.0	
   27.5	
   1.1	
  

d (kpc)	
   Z	
  

NGC 6822	
   490	
   ~0.3	
  
M33	
   840 ~0.5	
  
IC 10	
   950	
   ~0.3	
  

Arches-like cluster in M33 
(photometric crowding) 

Very nearby low-metal 
galaxies	
  

K = 27.5 can be detected with IRIS photometry at 5σ in 
1 hour, though the mass limit would lie ~40 M for IFU	
  



High & low-mass end of IMF	
  
  How do massive stars form?  

 Spatially and kinematically resolving 
circumstellar environment of young massive 
stars in NIR and MIR (up to 24 µm) 

  structure of the gas envelope, accretion disk, 
outflows, multiplicity, (low-mass) protostellar 
crowding around the forming massive 
protostar … 

 d = 3 kpc for typical Galactic massive 
protostars  
→	
  structures on ~1000 AU scales, e.g. 
corresponding to disk diameters, extend over 
~0.3 arcsec. 



High & low-mass end of IMF	
  
  How do free-floating planets form?  
    Fragmentation or dynamical ejection? 

 Detecting bottom end of 
the IMF, under various 
environment (e.g., cluster 
density) 

 Spectroscopy (may not 
need R~4000) for ~1 MJup 
or sub-Jupiter-mass 
objects  

   → comparison with bound 
planets 

？	
  

~6 Jupiter-mass	
  
(Peña Ramírez et al. 2012)	
  



Synergy with other 
observatories	
  

  ALMA  
 Resolving clumps, dense cores, YSOs with jets 

and outflows in distant regions and beyond 
MW  

  SOFIA 
 Providing good targets for massive protostars 

  Wide-field AO for 8 m telescopes 
  Improving IMF 
 Detecting least massive free-floating planets 
→spectroscopic follow-up 



Planet formation: 

When, where and what kind of 
planets form in what type of 

disks? 

How planets and a disk 
mutually evolve?	
  



Protoplanetary disks	
  
1.  Planet formation will occur, 

or is ongoing 
 Initial condition 

2.  Planet formation has 
recently finished 

 Interaction between planets 
and disks, evolution of 
planetary orbits, triggered 
formation of more planets? 

 Forming planets in disks 

NIR scat. light 
(Δθ~60 mas)	
  

submm thermal 
(Δθ~200 mas)	
  

(Perez et al. 2014)	
  

(Muto et al. 2012;  
Perez+ 2014)	
  



Water snow-line CO snow-line
1 AU10 AU100 AU

Ro-vib CO, HCN, 
NH3, C2H2, CO2

Rotational H2O

N2H+

C grain 
destruction

Ice migration

Photo-desorption

Ice

Gas

Dust

1000 K

10 K

100 K

HCN

C2H2

CO2

Model

Spitzer-IRS
ALMA SMA

Model

VLT-CRIRESCO v=1-0

1000 K	
  100 K	
  
10 K	
   1 AU	
  10 AU	
  

100 AU	
  

TMT can probe inner, planet-
forming region (≲10 AU)	
  

(courtesy K. Pontoppidan, Taken from the DSC2014 draft)	
  

CO at 5 µm	
   C2H2, HCN… 3—14 µm	
  

Water snow-line	
  

R=105 to obtain kinematic information	
  



Planet-disk interaction	
  
  Most T Tauri stars cannot be 

observed with ExAO on 8-10 m 
telescopes 
→  Waiting for TMT for the inner 

region (<20—30 AU) and/or small-
scale (≲8 AU) structure 

  Indirect evidence of planets 
(≲0.1 MJup) by scattered-light 
imaging; spiral arms 

(courtesy T. Muto, from 
the DSC2014 draft)	
  



Planet-disk interaction	
  
  Accreting/growing planets 

 Local non-Keplerian velocity 

(Regaly et al. 2014)	
  

Model CO(4.7 µm) line profile 
(R=100,000) 	
  

v(km/s)	
  

N
o

rm
a

liz
e

d
 fl

u
x	
  



Water snow line	
  
  Enhanced accretion of planetary cores, origin 

of the water in terrestrial planets 
1.  Water vapor in NIR and MIR → prediction of 

underlying snow line 
2.  Icy grain feature at 3.1 µm in scattered light → 

snow line at the disk surface 

H2O	
  

snow line	
   (Honda et al. 2009)	
  



Pre-biotic chemistry	
  

  The amount and molecular form of CHONPS 
molecules delivered to potentially habitable 
planets ultimately provide the basis for the 
formation and evolution of terrestrial atmospheres 

  Depletion of C on the Earth: universal? 
Observations of planet-forming CHONPS molecules 
with the TMT will provide observable links to the 
growing population of exoplanets 

Pontoppidan et 
al. (2010) 

Ground-based 
detection: e.g., 
Mandell et al. 
(2012)	
  

Water	
   C2H2	
  

HCN	
  



TMT’s high sensitivity	
  

  Statistically study is 
finally possible 

  New molecules, 
more complex 
ones; e.g. HCOOH 
(Nomura@TMT 
conf. 2013) 

Flux [mJy]	
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TMT-MICHI 
20 σ, 1 hour	
  

Gemini-TEXES 
20 σ, 1 hour	
  

The 8 µm brightness distribution (Evans et al. 2009) 
Sensitivity for high-R (R=100,000)	
  



Until TMT’s era	
  

ALMA 
Density & temperature 
distribution at ~1 AU 
scale beyond ~10 AU 

ExAO on 8 m  
Structure at inner AU 
optically bright, early-
type YSOs 

JWST 
Presence of organic 
molecules at ≲10 AU 
for larger sample 

TMT 
•  Structure at ~1 AU 

scale within ≲10 AU 
for Solar-mass stars  

•  Detecting forming 
planets 

•  Locating water and 
organic molecules 



Which instrumental capability? 
(extracted from the DSC)	
  

Science theme	
   observations	
   capabilities	
  

IMF vs. environment 
•  Resolving stellar populations 

in distant clusters in MW and 
in Local Groups	
  

•  Diffraction-limited imaging 
and spectroscopy in NIR	
  

IRIS 
IRMS	
  

Kinetic evolution 
•  Initial condition of cluster 

formation 
•  early dynamical mass 

segregation 	
  

•  mass, position, and velocity 
measurements in optical 
through MIR	
  

IRIS 
IRMS 
WFOS 
NIRES 
MICHI	
  

Multiplicity 
•  Improving statistics  
•  Constraints on star 

formation models 
•  New parameter space 
•  Binary formation	
  

•  Diffraction-limited NIR 
imaging 

•  astrometry and 
spectroscopic orbital 
monitoring 

•  High contrast observations 
•  MIR for embedded Class I 	
  

IRIS 
WIRC 
PFI, SEIT 
HROS 
NIRES	
  



Science theme	
   observations	
   capabilities	
  

High-mass star 
formation 
•  Protostellar dusty 

environment 
•  composition and 

kinematics 

•  high resolution NIR and MIR 
imaging (imaging at wavelengths 
of 24 µm or longer is valuable for 
RT calculations) 

•  coronagraphic spot  
•  requiring relatively large chop 

throw angles of ≳30 arcsec 
•  Brγ  (2.17 µm), He I (2.06 µm). [Ne II] 

(12.8 µm), 10 &18 µm silicate 
absorption 

•  R~9000—30000 in NIR/MIR for 
kinematics	
  

IRIS 
MICHI	
  

•  Formation of BDs & 
PMOs 

•  Sub-Jupiter mass 
free-floating planets 

•  Bottom end of IMF	
  

•  High sensitivity (resolution) imaging 
at >~1 µm 

•  High sensitivity (resolution) 
spectroscopy (R~1000: check) 

•  Wide field-of-view	
  

IRIS 
IRMS 
WIRC	
  



Science theme	
   Observations capabilities	
  

Planet formation vs host 
stellar property 
•  Improving statistics 
•  Resolving disk 

structure in distant 
star-forming regions 

•  High spatial resolution/contrast  
imaging/spectroscopy in NIR 
(including L band) and MIR	
  

PFI 
MICHI	
  

Gas dissipation 
timescale 
•  In situ measurements 

of gaseous reservoir	
  

•  [Ne II] (12.8 µm), CO (4.7 µm) 
•  High R (~100,000) 
•  Spectro-astrometry	
  

MICHI 
NIRES	
  

Disk structure  
•  Detecting signatures 

by planets in disks 
•  Signs by sub-Jupiter 

planets	
  

•  Diffraction-limited imaging in 
NIR and MIR 

•  High-contrast imaging 

IRIS? 
MICHI 
PFI 
SEIT	
  



Not included in the 1st light 
instruments	
  

  3—5 µm 

 CO (4.7 µm), water, ice (3.1 µm) 

  MIR (with AO) 

  High dispersion spectroscopy 
(R~100,000) in NIR and MIR 

Most of planet formation science cases  
cannot be done at the 1st light	
  



Candidates of key programs 
(under discussion…)	
  
  Planet formation at various ages 

at different disk radii under 
different environment (metallicity 
etc.) 

  Planets and disks 
 Observing accreting planets in 

the disk gap 
 Chemical survey of disks, 

comparison with exoplanet 
atmosphere 

 Snow line	
  
(P. Armitage)	
  

Never observed 
before	
  


