

New Directions in Solar System Small Body Science with the TMT

K. J. Meech Institute for Astronomy, University of Hawai'i TMT Science Forum, July 18,2014

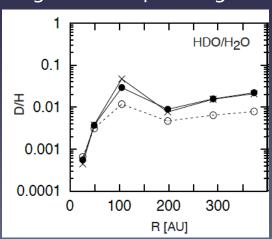


Key Planetary Science Decadal Goals – small bodies

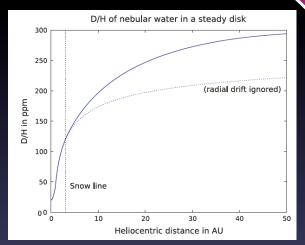
- Understanding how habitable worlds are created
- What were the initial stages, conditions and processes of solar system formation?
- What governed the accretion, supply of H2O & inner planet chemistry?
- From where did Earth get its water?

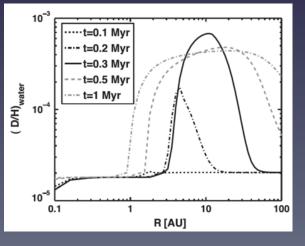
A rapidly changing landscape

- Dynamical models are starting to reproduce structure, but not chemistry
- Disk chemical models predict chemical gradients, but many models & don't fold in dynamics


Disks to Planets

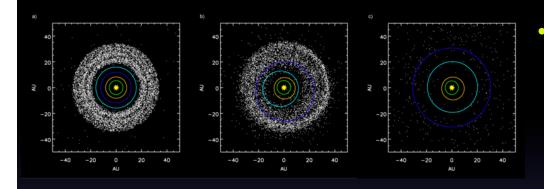
dust optical surface
HOT SURFACE


COLD MIDPLANE

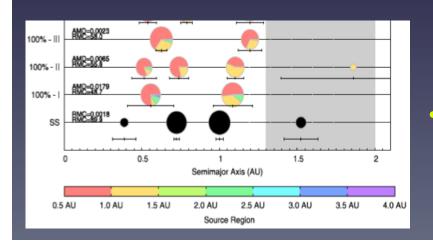

Planets form in circumstellar disks

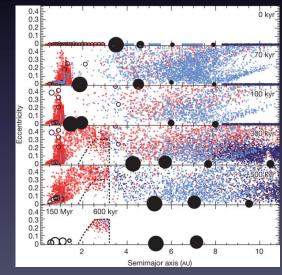
- Disks are flared → higher surface T (UV irradiation)
- Volatiles present as gas and ice (inside a snow line)
- Key volatiles: H₂O, CO, CO₂
- New Chemical models & Tracers
 - Solar system starts enriched from D in ISM
 - Isotopic exchange as T increases
 - Viscous transport moves inner nebula gas outward
 - D/H of disk gas a mix of infalling and transported gas

Bergin et al.



Left: Aikawa *et* al (2002); Top Right: Jacquet & Robert (2013)


Yang et al (2013) Right:


Evolving Dynamical Models

- Nice Models (Morbidelli et al '00-'10)
 - Post-Jupiter formation
 - Explains much of SS architecture
 - Levison '09, KBOs captured into outer main belt

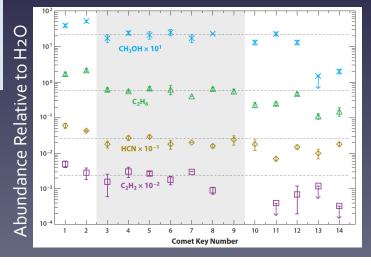
- Grand Tack Models (Walsh et al '11)
 - Allows gas giants to migrate in a disk
 - Explains low mass of asteroid belt
 - Redistributes icy objects from outer regions into belt

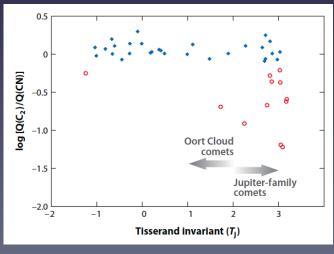
- Disk Depletion (Izidoro et al '14)
 - 50-75% depletion in mass between 1.3-2.0
 AU (caused by differing viscosity)
 - Earth can form mostly from local disk

Quick Comet History – Taxonomies

Comet (Primitive) Mixing Ratios			
	Low	High	# comets
H2O	100	100	
СО	<0.01	26	27
CO2	0.0005	89	35
СНЗОН	<0.1	6	>10
CH4	0.2	1.5	>10
C2H2	0.1	0.5	>10
C2H6	0.1	0.7	>10
H2CO	0.15	4	>10
NH3	<0.2	1.5	>10
HCN	0.08	0.5	>10
CH3CN	0.009	0.04	>10
H2S	0.13	1.5	>10
нсоон	0.05	0.15	3
HOCH2CH2OH	0.03	0.03	1
нсоосн3	0.08	0.08	1
СНЗСНО	0.02	0.02	1
NH2CHO	0.015	0.015	1
HNCO	0.02	0.1	6
HNC	0.003	0.05	>10
HC3N	0.003	0.07	4
OCS	0.1	0.4	3
SO2	0.2	0.2	1
CS2	0.06	0.2	6
H2CS	0.05	0.05	1
NS	0.02	0.02	1
S2	0.001	0.15	5

Tracing chemistry


- Optical, UV mostly dissociation fragments
- Parent species IR, sub-mm
- Noble gases far UV (λ < 1200 A)


Primary volatiles

- H₂O near IR (2.9 μm), Proxy CN, OH
- CO-UV
- CO₂ 4.26 μm (space)

Isotopes

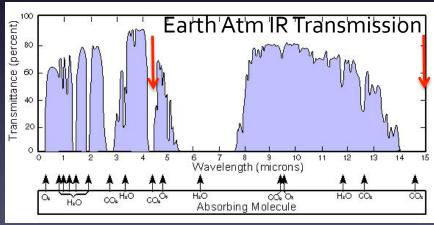
- ISO, Herschel, Sub-mm, High resolution optical
- C, N ~ 18, D/H ~ 8, O ~ 5 comets

Mumma & Charnley 2011; A'Hearn et al 1995

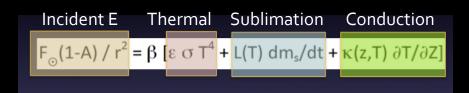
In-Situ Data

Comets: pre- In situ Missions

- Comets a mix of dust & volatiles
- Comet taxonomies
- Primary Volatile is H2O (CO+ CO2)


In-Situ new results

- Comets are very diverse
- Excellent insulators
- Comets have high & low T materials
- CO₂ drives activity at q

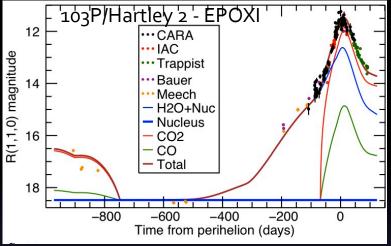


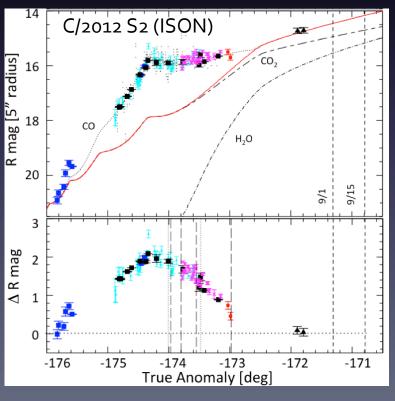
- Limited information on CO2
 - Missions & space telescopes: Deep Impact, EPOXI, ISO, Akari, Spitzer, WISE
 - Forbidden CO emission during photo-dissociative excitation of CO

Heliocentric Light Curve & Models

Surface sublimation models

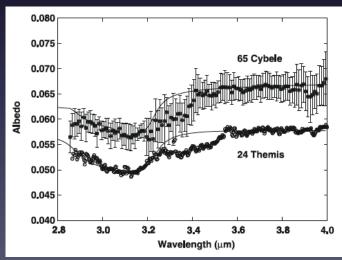
- Energy balance at nucleus surface
- Ices sublimate, drags dust → larger surface
- Compare measured & computed brightness


EPOXI & Hartley 2


- Activity at q driven by CO₂ outgassing
- Light curve provides information about CO2

C/2012 S1 ISON

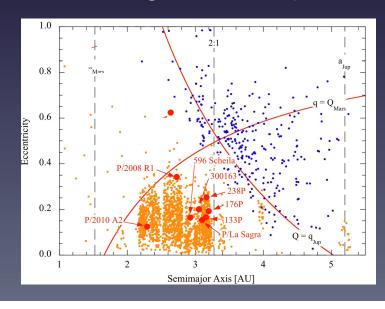
- Matches Spitzer CO+CO2, ground H2O
- Activity at large r CO₂ + CO outburst


Top: Meech, et al (2011); Bottom: Meech et al (2013)

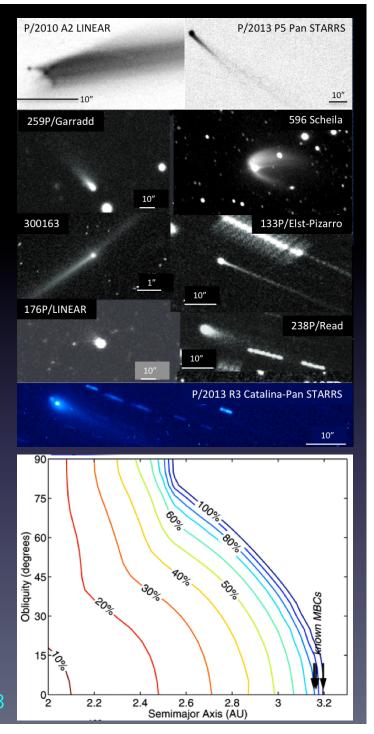
Planetocentric longitude (°)

Kuppers et al. (2014)

Rivkin & Emery (2008) Campins et al. (2009) Licandro et al (2011)

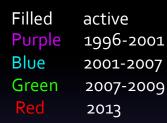

A Wet outer belt

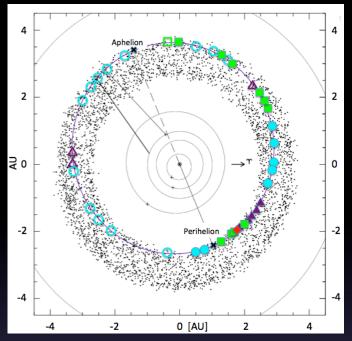
- Water outgassing observed on Ceres
 - Herschel search for H₂O from 11/11-3/13
 - Outgassing correlated with dark areas
 - Activity correlated with perihelion
- Surface ice & organics
 - Detected on 24 Themis, & 65 Cybele
- Discovery of a new class of 'wet' objects
 - Main belt comets

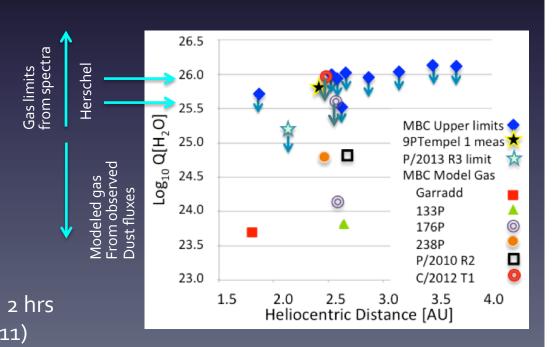

"Main Belt Comets"

- First Discovered in 1996 (Elst-Pizarro)
 - 12 now known
- Characteristics
 - Dynamicaly asteroidal, appear cometary
 - Amount of dust is small
- Several are collisional family members
 - Themis family ~ 2 Gyr
 - Beagle sub-family of Themis (~10 Myr)

Jewitt, 2012


Schorghofer, 2008

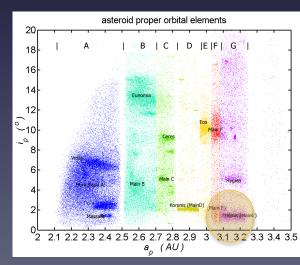



"Main Belt Comets"

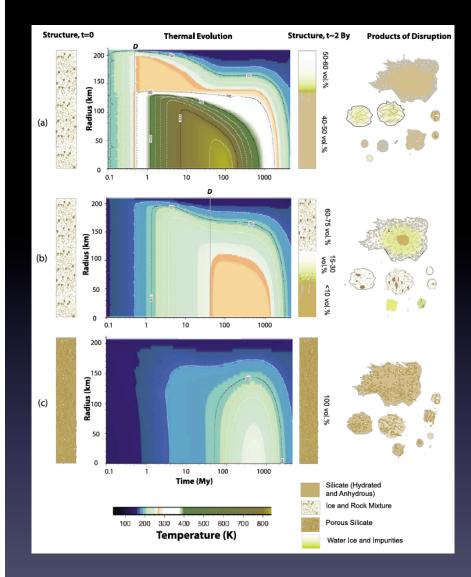
Mechanisms

- Collision (3 likely)
- Spin up
- Volatile outgassing H2O not stable on surface
- Repeat activity
 - 2 have been seen active more than 1x
- No gas detected
 - Below limits of detection

Themis Family


Family Characteristics

- > 580 members
- Mainly C type, but also B & D-type (primitive)
- Largest fragment, 24 Themis (198 km, ρ =2.8±1.4 g/cm³)
- Disruption 2 Gyr ago


Parent Body

- 380-450 km diameter
- Water-rich protoplanet
- Formation t dictates thermal evolution

Castillo-Rogez & Schmidt, (2010)

[a,b] Mix of ice and rock, $\rho=2.0$ g/cm³; [c] hydrated silicates ρ =2.7 g/cm³. Formation [a] 3 Myr [b,c] 5 Myr after CAIs).

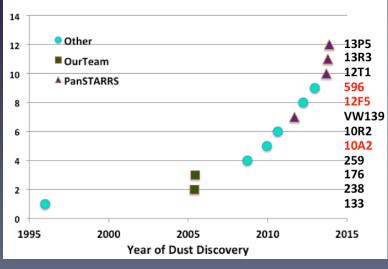
Castillo-Rogez & Schmidt, (2010)

Primitive? Evolved?

- - 2 cases (1) mix of ice and silicates, or (2) hydrated silicates
 - internal heating (radioisotopes)
- Model results
 - a) Melting & differentiation
 - Core: hydrated silicates
 - Shell ice has organics
 - b) Partial differentiation (40% of vol.)
 - c) Little geophysical evolution

Themis likely accreted later, and family preserves primitive volatile material

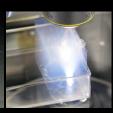
MBC Accelerating Discoveries


Pan STARRS

- Operations began in 2008
- From mid 2010 PS1 dedicated 5% to solar system observations
- 11/2012 this increases to 11%
- 4/1/14 100% ecliptic NEO survey
- PS2 online by end of year
- March 2015 90% of PS1&PS2 for SS

Survey Impacts

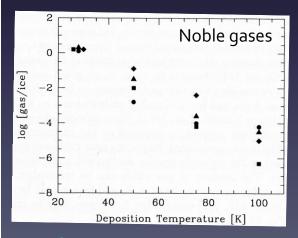
- PS now is main discoverer of MBCs
- New reprocessing of data



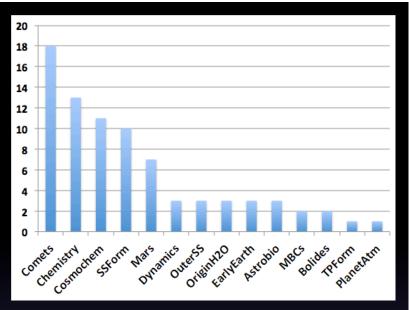
MBCs – An Unsampled Volatile Reservoir

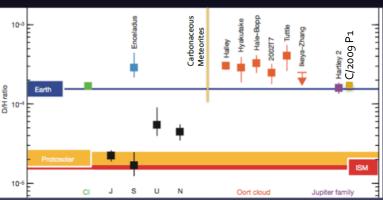
We have detailed information from

- JF comets (EPOXI, Stardust,... Rosetta)
- Inner asteroid belt / NEOs (meteorites)
- Icy outer moons (Cassini)
- Kuiper belt (New Horizons)


Sample a new H2O reservoir: MBCs

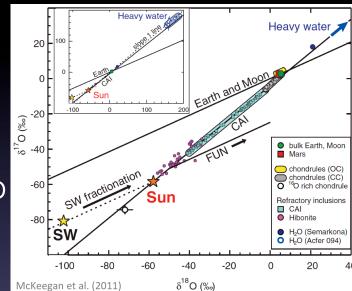
- Measurement of isotopic fingerprints
- Testing dynamical models
- Testing disk chemistry models



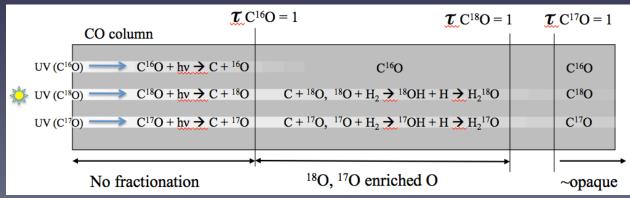

Isotope Fingerprints

- A single isotope changes everything. . . .
 - Herschel measures D/H in Jupiter Family comet 103P/Hartley 2
 - Hartogh (2011) Nature heavily cited by many communities
 - A rush to change models

After Owen & Bar Nun



Hartogh et al. (2011)


- Noble gases
 - An ice condensation thermometer

Isotopic Fingerprints

- CO self shielding Models (Lyons *et al* 2005)
 - Sun & CCs have slope 1 mixing of ¹⁶O-poor and ¹⁶O-rich reservoirs
 - CO isotopologues dissociate at different UV λ
 - O then combines with nebular H2 to make H2O
 - When C¹⁶O becomes optically thick, nebula makes ¹⁷O- and ¹⁸O-rich H₂O
- Nitrogen isotopes
 - Inherit from ISM
 - N2 self shielding

McKeegan et al, 2011

E. Young, J. Lyons

TMT, JCMT, ALMA as Game Changers

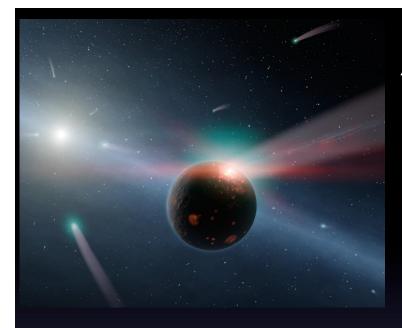
Parent volatiles & isotopes

- ~1-2 comets/yr bright enough
- CO2 needs space observations
- Can't presently do MBCs w/o in-situ visit

A Comprehensive combined approach

TMT

- 1st light instruments
 - Q_{H2O} many comets → modeling
 - First direct measure of H2O in asteroid belt
- Next generation
 - Isotopes (optical spectra R~ 60,000)
 - Near IR parent volatiles (CO), D/H (R~20,000)


JWST

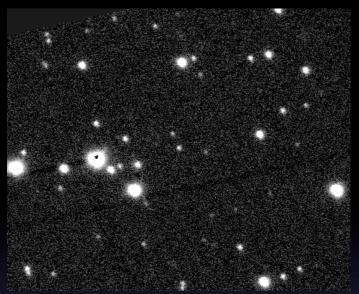
- CO, CO2 direct observations in comets
- Snowlines
- ALMA Mapping CO in disks

A paradigm shift is underway – there may be water everywhere in the outer belt, and this may profoundly change our understanding of the formation and location of habitable worlds. . . .

The key is mapping distribution of volatiles & isotopes in small bodies & disks

Understanding how habitable worlds form in our SS has implication for habitability in extra solar planetary systems

Workshops Without Walls


WWW #2 - 11/8/2010: 560 participants, 31 states, 30 countries

- A means to foster development of
 - Key Programs & Partner collaborations
- What are WWWs Science meetings without cost
 - NASA Astrobiology Institute development
 - Videoconferencing + online meeting software (talks are archived)
 - Allows for screen sharing / user control of talk
 - Multiple Chat rooms (breakouts / coffee break)

https://astrobiology.nasa.gov/seminars/featured-seminar-channels/workshops-without-walls/

A Key Reminder...

Solar system objects move!!!

Courtesy L. Dennau

- Build planetary capabilities in from the start
 - Non-sidereal guiding
 - AO that can handle moving objects
 - Smooth interfaces to national databases of orbital elements for ephemeris computation