A High Resolution View of Exoplanet Atmospheres in the TMT Era

Jayne Birkby **Sagan Fellow, Harvard-Smithsonian Centre for Astrophysics** jbirkby@cfa.harvard.edu http://www.cfa.harvard.edu/~jbirkby @jaynebirkby

Detecting molecules with transmission spectroscopy

Starlight filtering through an atmosphere during transit is imprinted with the planet's spectrum

Transit depth ~ $(R_p/R_s)^2$

"The nearest transiting potentially habitable planet is ~11 pc away." "The nearest [non-transiting] potentially

habitable planet is ~2.5 pc away."

(Dressing & Charbonneau 2015)

Detecting molecules with High Dispersion Spectroscopy (HDS)

A CRIRES/VLT survey of hot Jupiter atmospheres

CRIRES: CRyogenic high-resolution InfraRed Echelle Spectrograph • R=100,000 spectrograph, 8.2 m mirror

- 155hrs

5 brightest host stars visible from Paranal, Chile ($K \sim 4 - 6 mag$):

HD 209458 b, HD 189733 b, 51 Peg b, τ Boo b, HD 179499 b

HDS detects the radial velocity shift of the *planetary* spectrum

HDS detects the radial velocity shift of the planetary spectrum 8.0

HDS detects carbon monoxide RV trail in a non-transiting hot Jupiter atmosphere

·····

CO detected at 6σ at 2.3 µm in T Boo b on the dayside hemisphere (non-transiting) _0.2 with CRIRES/VLT

HDS detects carbon monoxide RV trail in a non-transiting hot Jupiter atmosphere

Slope = planet velocity → spectroscopic binary

(90-i)°

·····

CO detected at 6σ at 2.3 µm in T Boo b on the dayside hemisphere (non-transiting) _0.2 with CRIRES/VLT

HDS provides unambiguous detections of complex molecules in hot Jupiter atmospheres

-2.0σ	-1.1σ	-0.2σ	+0.7	+1.6σ	+2.5σ	+3.4σ	+4.30

See also Rodler et al. 2012; 2013 (CO in T Boo b & HD 189733 b); Lockwood et al. 2014 (H₂O in T Boo b)

	-3.6σ	-2.4σ	-1.2σ	0	+1.2σ	+2.4σ	+3.6σ	+

HDS provides unambiguous detections of complex molecules in hot Jupiter atmospheres

See also Rodler et al. 2012; 2013 (CO in T Boo b & HD 189733 b); Lockwood et al. 2014 (H₂O in T Boo b)

51 Peg b **Non-transiting CO@2.3µm** Brogi et al. 2013 Vsys [km s⁻¹]

+1.2σ

+2.4σ

20

Atmospheric structure is tied to composition Jupiter Earth

20

B C P1 S. **()**

Non-inverted = absorption lines Inverted = emission lines

500

1350 Temperature / K

Temperature / K

(non-inversion) to date

Monitoring atmospheric dynamics with HDS

Winds only

Winds+rotation

Winds only

Winds+rotation

Winds only

Winds+rotation

Winds only

Winds+rotation

Measuring planet angular momentum with HDS + High Contrast Imaging (HCI)

HDS currently reaches contrast ratios of 10⁻⁴

HDS currently reaches contrast ratios of 10⁻⁴

High contrast imaging (HCI) on 8m telescope can reach a raw contrast ratio of 10⁻³

*PSF of **AO-assisted** HCI observations with an 8m telescope at 0.5µm, with a Strehl ratio of 0.3 under 0.6 arcsecond seeing conditions (no SDI, ADI, etc)

HDS currently reaches contrast ratios of 10⁻⁴

under 0.6 arcsecond seeing conditions (no SDI, ADI, etc)

HDS+HCI offers improvement over HCI-only until the thermal background noise dominates

$$S_{\text{planet}}$$

 $\frac{K + \sigma_{\text{bg}}^2 + \sigma_{\text{RN}}^2}{\sigma_{\text{BM}}^2 + \sigma_{\text{RN}}^2}$

 Star and tellurics are dominant and identical over the whole field, speckles contain spectrum of the star, effectively filtered out, planet signal is uniquely different and strongly localised.

• Thermal background noise (σ_{bg}) dominates beyond ~5µm - classic HCI observations have the advantage.

Spectra extracted at every position along the slit and stellar/telluric profile removed Dispersion

CO detected in β Pic b. Strongest CC at RV = -15.4±1.7 km/s at ~0.4" Consistent with position from direct imaging and with a circular orbit. H_2O only seen at SNR~2. No methane.

Velocity [km sec

Snellen, Brandl, de Kok, Brogi, Birkby, Schwarz, 2014

$\cdot \cdot \cdot = instrument$ profile

Assumed:

- $M_{D} = 11 \pm 5M_{I}$
- $R_p = 1.65 \pm 0.06 R_1$
- Small obliquity

(Radius from Currie et al. 2013)

The length of one day $P_{rot} \sim 8.1 \pm 1.0$ hours

Near-term future of HDS (+HCI)

Cross-correlation strength scales with the square root of the number of lines ($S \propto \sqrt{N_{Line}}$)

Cross-correlation strength scales with the square root of the number of lines ($S \propto \sqrt{N_{Line}}$)

Multiple IR high-resolution spectrographs are planned for the near future

Active, Planned, and Notional High-Resolution IR Spectrographs Table 1.

Instrument	Resolution	Wavelength Coverage	Telescope	Status	References
CSHELL	40,000	$1-5 \mu\text{m}, \sim 0.0025\lambda$ coverage	IRTF (3m)	Operating	Greene et al. (1993)
Phoenix	70,000	$1-5 \mu m$, ~ 0.005λ coverage	KPNO (4m)	Operating	Hinkle et al. (1998)
ARIES	50,000	$1-2.5 \mu m$ simultaneous	MMT (6.5m)	Operating	McCarthy et al. (1998)
CRIRES	90,000	$1-5 \mu m$, ~ 0.02λ coverage ^a	VLT (8m)	Operating ^a	Kaeufl et al. (2004)
IRCS	20,000	$1-5 \mu m$, ~ $0.2 \mu m$ coverage	Subaru (8m)	Operating	Tokunaga et al. (1998)
NIRSPEC	20,000	$1-5 \mu m$, $\sim 0.1 \lambda$ coverage	Keck (10m)	Operating	McLean et al. (1998)
IGRINS	40,000	$1.5-2.5 \ \mu m$ simultaneous	McDonald (2.7m)	Commissioning	Yuk et al. (2010)
GIANO	50,000	$1-2.5 \mu m$ simultaneous	TNG (3.6m)	Commissioning	Oliva et al. (2012)
ISHELL	72,000	$1-5 \mu m$, $\sim 0.1 \lambda$ coverage	IRTF (3m)	Under construction	Rayner et al. (2012)
CARMENES	82,000	$0.6-1.7\mu m$ simultaneous	Calar Alto (3.5m)	Under construction	Quirrenbach et al. (2012)
SPIRou	75,000	1-2.4 μ m simultaneous	CFHT (3.6m)	Under construction	Thibault et al. (2012)
IRD	70,000	$1-1.75 \mu m$ simultaneous	Subaru (8m)	Under construction	Tamura et al. (2012)
HPF	50,000	$0.95-1.35 \ \mu m$ simultaneous	HET (9m)	Under construction	Mahadevan et al. (2012)
HiJak	60,000	$0.8-2.5 \ \mu m$ simultaneous	DCT (4.3m)	Notional	Muirhead et al. (in prep.)
iLocater	100,000	0.95–1.1 μ m simultaneous	LBT (8m)	Planned	Crepp et al. (2014)

^aCRIRES is scheduled to be upgraded during 2014–2017 to provide $\sim 0.2\lambda$ coverage.

Crossfield 2014

HDS(+HCI) in TMT era

The TMT will enable time/disk-resolved observations of exoplanet atmospheres

The TMT will enable time/disk-resolved observations of exoplanet atmospheres

Molecular abundance ratio variations and atmospheric structure probed as a function of orbital phase (morning, midday, evening, night side) \rightarrow photochemistry

• Individual molecular lines detected \rightarrow form at different altitudes

• Sensitive to isotopologue ratios \rightarrow insight into evolutionary history

• Rossiter-McLaughlin effect at secondary eclipse \rightarrow spin-orbit alignment of planet Nikolov & Sainsbury-Martinez (2015)

Biomarkers

HDS with TMT/HROS-like instrument could detect oxygen in Earth-like planets in the habitable zone of M-dwarfs

M5V+Earth twin in habitable zone:

- observe 12-30 transits - detect O_2 at 5σ

Snellen, de Kok, le Poole, Brogi, Birkby 2013; Rodler & Lopez-Morales 2014; Webb & Wormleaton 2001

- takes 4-20 years for the nearest systems (I~10.5 mag, η_{\oplus} =1)

Finding our nearest rocky neighbours

HDS+HCI with TMT could detect Earth-size planets in habitable zones of the nearest stars

Simulations for infrared IFU (e.g. TMT/NIRES-R)

Telescope + Instrument * Telescope collecting area Telescope temperature Telescope emissivity Telescope+instrument throughput AO Strehl (4.85 μ m) Spectral resolution * Exposure time Spectral range Target: α Cen A Apparent K magnitude $T_{\rm eff}$ (star) Stellar radius Distance Planet radius Planet radial velocity $T_{\rm eff}$ (planet) Bond albedo Planet spectrum

*TMT area $655m^2$, rescale time by ~1.5

Snellen, de Kok, Birkby et al., 2015

976.3 m² 280 K 0.15 15% 0.9 $R = 100\,000$ 30 h 4.82–4.89 μm

-1.475800 K $1.22 R_{sun}$ 1.34 pc $1.5 R_{\text{Earth}}$ 30 km s^{-1} 300 K 0.3 Earth-like Liske et al. 2012

HDS+HCI with TMT could detect Earth-size planets in habitable zones of the nearest stars

Simulations for infrared IFU (e.g. TMT/NIRES-R)

Telescope + Instrument * Telescope collecting area Telescope temperature Telescope emissivity Telescope+instrument throughput AO Strehl (4.85 μ m) Spectral resolution * Exposure time Spectral range Target: α Cen A Apparent K magnitude $T_{\rm eff}$ (star) Stellar radius Distance Planet radius Planet radial velocity $T_{\rm eff}$ (planet) Bond albedo Planet spectrum

*TMT area $655m^2$, rescale time by ~1.5

Snellen, de Kok, Birkby et al., 2015

976.3 m² 280 K 0.15 15% 0.9 $R = 100\,000$ 30 h 4.82–4.89 μm

-1.475800 K $1.22 R_{sun}$ 1.34 pc $1.5 R_{\text{Earth}}$ 30 km s^{-1} 300 K 0.3 Earth-like Liske et al. 2012

HDS+HCI with TMT could detect Earth-size planets in habitable zones of the nearest stars

sec)

Dist

Simulations for optical IFU (e.g. HROS/TMT)

Telescope + Instrument * Telescope collecting area Telescope+instrument throughput AO Strehl (0.75 μ m) Spectral resolution * Exposure time Spectral range IFU pixels Target: Proxima Cen Apparent V magnitude $T_{\rm eff}$ (star) Stellar radius Distance Planet radius Planet radial velocity $T_{\rm eff}$ (planet) Grey geometric albedo Orbital radius Angular distance from star *TMT area 655m², rescale time by ~1.5

Snellen, de Kok, Birkby et al., 2015

976.3 m² 15% 0.3 $R = 100\,000$ 10 h $0.6 - 0.9 \,\mu m$ 30×302 mas

11.05 3040 K $0.141 R_{sun}$ 1.30 pc $1.5 R_{\text{Earth}}$ 30 km s^{-1} 280 K 0.3 0.032 AU 25 mas

Liske et al. 2012

-0.02 - 0.01

Cross-correlation map for reflected light around Proxima within the habitable zone

> 0.00 0.01 0.02 0.03 Distance (arcsec)

Sky-background is negligible in the optical

Mapping atmospheric surface features

HDS+HCI with TMT permits Doppler imaging of exoplanets

© Marshall Johnson <u>http://www.as.utexas.edu/~mjohnson</u>

HDS+HCI with TMT permits Doppler imaging of exoplanets

© Marshall Johnson <u>http://www.as.utexas.edu/~mjohnson</u>

HDS+HCI with TMT permits Doppler imaging of exoplanets

Global cloud map of brown dwarf Luhman 16B from Doppler imaging with CRIRES/VLT (Crossfield et al. 2014)

© Marshall Johnson <u>http://www.as.utexas.edu/~mjohnson</u>

Simulations of HDS+HCI show ELTs can map exoplanet atmospheric surfaces

(Crossfield et al. 2014)

Mapping of β Pic b would be twice as efficient as VLT mapping of a brown dwarf

- separations.

atmospheres and probes their thermal structure.

 C/O ratios measured with HDS may reveal planet formation mechanism and birth location in protoplanetary disk.

• HDS+HCI reveals the rotational velocity of giant planets at wide

 HDS(+HCI) in the era of the TMT will be time/disk-resolved and can identify **biomarkers**, locate our nearest habitable rocky neighbours, and create **maps** of atmospheric surface features.

• HDS unambiguously identifies molecular features in exoplanet

http://www.cfa.harvard.edu/~jbirkby

