(Star and) Planet Formation with the TMT

THT.OPS.PRE.15 0/2 REL01 Gregory J. Herczeg (沈雷歌/Shen Leige) Kavli Institute for Astronomy and Astrophysics, Peking University

The last astrophysical step of our origins

Star and Planet Formation with the TMT

 Initial Planet Mass Function for Stars in Diverse Environments

- Disk survival timescales/planet formation
- The physics of planet formation at high resolution
 - Scattered light structures
 - Disk chemistry and planetary abundances
 - Directly detecting protoplanets in formation

• Direct detection of young exoplanets

 - (Exoplanet science case – all of the direct imagers are at a different conference!)

How would a forming planet affect a disk? (e.g., Lin & Papaloizu 1986; Zhu+2011)

Competition between gas accretion; gap/hole formation

Transition disks and planet formation

Spitzer legacy

- Lack of warm dust as absence of near-IR emission
 - Ongoing accretion: hole in dust, gas still unclear

e.g., Strom+1989, Calvet+2002, D'Alessio+2005, Kim+2009, Merin+2010

Dust traps with ALMA (e.g., Perez+2014; van der Marel+2015; Pinilla+2015)

Dust traps in simulations of non-ideal MHD disk physics

ALMA: Structure of the HL Tau disk

- Planets? Unlikely
- Chemistry of freezeout/grain growth? (Zhang+2015)
- Rossby waves from infalling envelope (Bae+2015)

0.025 arcsec resolution (3.5 AU) at 0.87 mm

Disk structure/planet formation is instability physics

Rossby waves from infalling envelope? Bae+2015

SEEDS: Decoupling of mm-sized, micron-sized Dong et al. 2012, slide courtesy Ruobing Dong

0.1 asec

SB*r2 [arb. unit.] B*r2 [arb. unit.] 0.3 asec

Instabilities small; need TMT to resolve!

Instabilities small; need TMT to resolve!

к_с d

Planet spectro-archeology: abundances from formation

Birkby Talk

 C/O ratios from direct imaging, transits (e.g., Madhusudan+2012; Line +2012)

 Still in infancy for directly imaged planets (e.g., Lockwood +2014; Snellen+2014)

Konopacky+2013.: spectra versus models for HR 8799b

Abundance of giant planets: set at protoplanetary disk phase

Cartoon from Semenov & Henning 2014 review

Abundance of giant planets: set at protoplanetary disk phase

Öberg et al. 2011: superstellar C/O could be enhanced explained by accretion of C-rich gas near ice lines

Observing H2O and CO snow lines

Qi+2014: CO snow line detected for a disk with ALMA, but what about H20 snow line?

H2O snow line from fluxes+chemical models; probably depends on stellar mass

Spitzer/IRS: Carr & Najita 2008; Salyk+2008

High resolution follow-up needed to measure the location of the snow line!

TMT: will open up the mid-IR at high spectral/spatial resolution

From TMT Star/Planet Formation Science Case

TMT: will open up the mid-IR at high spectral/spatial resolution

From TMT Star/Planet Formation Science Case

Spectroastrometry: improving the spatial resolution of TMT

Spectroastrometry: improving the spatial resolution of TMT

Pontoppidan+2008/2011

Gas asymmetries induced by planet should rotate

Regaly+2010 simulations of CO emission

(Proto?)-planet detection in a disk hole

Kraus & Ireland 2012: Keck AO with non-redundant aperture masking

A (proto)-planet around HD 100546b (Quanz+2014)

3 Myr old; compact object with some spatial extent!

A protoplanet as a young star (e.g., Bowler+2012; Zhou+2014; Zhu 2014)

Formation of protoplanets in progress (Zhou, Herczeg, et al. 2014; Bowler+2013)

GSC 06214-0210 ORIGINAL IMAGE UBVRI+H-alpha HST/WFC3 imaging (H-alpha here), PI Kraus

Also being pursued with MagAO optical light AO, Follette+

Measure accretion onto planet mass companions

Predictions for accretion rates: disk fragmentation or failed binary?

Stamatellos & Herczeg 2015

Formation history has lasting affect on luminosity (=mass estimates)

Chabrier+2014 review; see also Marley+2007; Spiegel & Burrows 2009

Exomoon formation and ALMA protoplanets (Kraus+2015; Bowler+2015)

Planet Formation with TMT (and 2nd generation instruments)

- Planet formation is the physics of disk instabilities, which needs high spatial resolution
- Snow lines for different molecules may lead to instabilities and affect final abundances of giant planets
- Planet growth/moon formation may be directly detectable at very small inner working angles (H-alpha, CO)
- ALMA and ExAO systems are revolutionizing this field (as will JWST); inner working angle and high resolution mid-IR are unique to TMT
- Direct detection of extrasolar planets (everyone at Lyot conference; many exciting Extreme AO results very soon)

GPI Images of HD 100546 at Small Separations: A Candidate 2nd Protoplanet (NEW!)

7-sigma point source-like feature (< 15 Mj)

Almost perfectly consistent with predicted position of second planet: "HD 100546 c" (Brittain et al. 2014)
protoplanet, disk hot spot/inner wall?

GPI: Twitter embargo fail

Summary GPIES exople 2 MJup at 13 AU; 20 Myr

- Star: 20 Myr (ß pic moving group) Fo star at 29 pc
- Observed by GPI
 December 2015
- T=650 K, L 2x10⁴
- No CPM but P (background) < 10⁵
- Mass 2 Jupiter masses (hot-start)

Projected sep. 13 APaper submitted to Science