Star and Planet Formation

Jessica R. Lu, Greg Herczeg

ISDT Synergy

Star and Planet Formation

Exoplanets

Milky Way and Nearby Galaxies

> High-Redshift Galaxies

Planet Formation: Terrestrial Planets and Moon Formation

- joint science case with exoplanet direct imaging
- disks in scattered light in the era of terrestrial planet formation
 - high-contrast polarization
 - blue side of NIR
- proto-lunar disks around gas giant planets
 - CO disks, H-alpha emission
 - accretion rates onto planets
 - R=300-3000 IFU spectroscopy

Planet Formation: Gas Disks during Giant Planet Formation

- •Conditions and time-scales for gas-giant planet formation
 - •dust/gas structure in young inner disks (warmer/closer than ALMA)
 - •resolved snow lines
 - •water lines vs. stellar mass
 - •mid-IR, AO-fed, IFU spectroscopy at R~100,000
- •Spectro-astrometry of the inner disk
 - •inner-most gas structures
- Ancillary Science: AU scale star formation
 outflows, jet-launching

Free-Floating Planet Mass Function

- Complete samples of planetary mass objects in nearby young clusters
 - •planet migration/ejection scenarios
 - "stellar-like" planet formation
 - •near-IR photometry, astrometry over wide(-ish) field
 - •spectroscopic follow-up
- Sample of clusters different ages, densities
 need to get out to 1 kpc to get sample of ~25 clusters

Free-Floating Planets

- Planets without host stars
- Probably form in low numbers as failed stars
- More probably formed through ejections of planets after protoplanetary disk dissipation
- Their mass distribution bears the fingerprints of the formation and subsequent evolution of planetary systems

Slide credit Matthew Penny

Free-floating planet mass function requires deep photometry.

Zapatero Osorio et al. 2013

Z — J

Astrometry needed to ID cluster members.

Westerlund 1 Cluster (5 Myr, 10⁴ M_{sun})

Lu et al. in prep.

Free-Floating Planet Mass Function

- •Complete samples of planetary mass objects in nearby young clusters
 - •planet migration/ejection scenarios
 - "stellar-like" planet formation
 - •near-IR photometry, astrometry over wide(-ish) field
 - •spectroscopic follow-up
- •Sample of clusters different ages, densities
 - need to get out to 1 kpc to get sample of ~50 open clusters

Instrument and Observatory

- PSI ExAO with IFU spectroscopy, R=300-3000, polarization mode
- MICHI R~100,000 spectroscopy behind AO (IFU?)
- IRIS or IRMS imaging astrometry/photometry
- IRIS, IRMS, IRMOS AO multi-object NIR spectra
- Cadence observing and/or long-program
- mid-IR morning observing

ISDT Community

