Nearby Galaxies ISDT Summary of Key Program Concepts

TARK & STER

ISDT Convenors Annapurni Subramaniam, Alan McConnachie

with thanks to Jessica Lu (Star Formation) and Tommaso Treu (Cosmology) Inspired by Jessica's slide...

Exoplanets

Star and planet formation

Stars

Milky Way and Nearby Galaxies

Galaxies

High Redshift Galaxies

Cosmology

Inspired by Jessica's slide...

~40+ members with very diverse interests

High Redshift Galaxies

Key Program Concepts

- "Working titles"
 - 1. The formation of L* galaxies as probed by the detailed chemical evolution of the oldest stars
 - 2. Building the stellar mass of galaxies
 - 3. The mass and shape of dark matter halos

1. The formation of L* galaxies as probed by the detailed chemical evolution of the oldest stars

• e.g., alpha element abundance pattern

The formation of L* galaxies as probed by the detailed chemical evolution of the oldest stars

- Key Instrument for TMT:
 - HROS (perhaps NIRES), operating somewhere between 30K 100K
 - MOS capabilities very useful, but detailed studies of wavelength coverage vs resolution vs Nobjects needs to be developed
- Key Capability with respect to existing telescopes:
 - Faint stars; objects currently only observed with Keck at moderate resolution observable with TMT at high resolution
 - i.e. for studies of the Milky Way, focus on areas/subcomponents/structures that are not well
 probed by current instrumentation
 - Outer halo, distant stellar streams, dwarf galaxies (especially those with very few bright stars)
 - Other Local Group (Local Volume?) galaxies
 - e.g. the differential chemical evolution of the subcomponents of L* galaxies in the Local Group
- Key reason for being Key:
 - Individual exposures probably reasonably long, and large samples required
 - Target selection important: culmination of program requiring ancillary data on smaller (ie 10mclass) telescopes

2. Building the stellar mass of galaxies

Karachentsev et al. 2004, 2013

- Key questions probe questions relating to Galaxy Evolution
- How does the build up of stellar mass through time vary between
 - low and high mass galaxies?
 - satellites and centrals?
 - quenched and unquenched galaxies?
 - early and late type galaxies?
- How quickly does the group or cluster environment shut off star formation on average?
- etc etc etc etc etc

Ferrarese et al. 2012

Building the stellar mass of galaxies

- Key Instrument for TMT:
 - IRIS
- Key Capability with respect to existing telescopes:
 - Faint stars, diffraction limit
 - · Pushing AO corrections into the optical very helpful
 - Mid-IR observations could be useful for better characterizing AGB stars
- Key reason for being Key:
 - Systematic survey is absolutely essential to answer driving science questions regarding populations of galaxies e.g. at what epoch do quenched galaxies become quenched? (NOT: at what epoch does KKR25 become quenched?)
 - Representative sample spanning all major parameters of interest likely numbers in the hundreds
 - Multi-band (2) photometry required per target, but individual exposures are long
 - Targets must have complementary wide field imaging from small (~10m) facilities NGC3379, E galaxy @ 11Mpc

Name	r	Σκ	Klim	Time	
	(arcsec)	(mag arcsec ⁻²)		(secs)	
Re	30	17.0	25.7	282	AGE
3Re	90	19.3	28.5	47200	HB
R _{tot}	190	22.5	31.6	80	
K (1 hour)	_	_	27.9	3600	

3. The mass and shape of dark matter halos

Jeans Eqn $\frac{1}{\nu}\frac{d}{dr}(\nu\bar{v_r^2}) + 2\frac{\beta v_r^2}{r} = -\frac{GM(r)}{r^2}$

where
$$eta(r)\equiv 1-ar{v_{ heta}^2}/ar{v_r^2}$$

Useful number:

PM = 200 microarcsecs/yr (Vt/100km/s) (100kpc/D)

```
Tangential velocity of LG satellites (D<=1000kpc)
=>PM ~ tens of microarcsecs/yr
Tangential velocity dispersion of MW satellites ~1 - 10 km/s?
```

=> PM ~2 - 20 microarcsecs/yr (much easier for closer satellites)

- Measure the orbits of the Milky Way (and Local Group) satellites —> masses of the MW and M31 dark matter halos, especially at large radius
- Measure the internal orbits of stars in the MW satellites —> inner mass profiles of the dark matter (sub)halos

Building the stellar mass of galaxies

- (Joint interest with Cosmology)
- Key Instrument for TMT:
 - IRIS
- Key Capability with respect to existing telescopes:
 - Faint stars, diffraction limit for crowded fields
 - Ability to measure net motion of a system or dispersion within a system scales as 1/ root(N) —> provides largest gain over (e.g.) HST
 - Observations spaced out over decade(s)...keep IRIS in working order!!!
- Key reason for being Key:
 - Multi-epoch observations are essential
 - Systematic survey of relatively large number of satellites (spanning luminosity i.e. probe impact of baryons on DM profiles)
 - In early years, precision will be similar to HST (proposals to use HST as "first epoch")
 - Over first decade or so, precision will begin to greatly exceed that of HST
 - Deep imaging of dwarfs also useful for other science (esp. stellar populations)

Summary

- Majority of stellar / stellar populations science is currently conducted at optical wavelengths
 - the next decade will see a transition away from this, but learning curve is required
- IRIS is the key first light instrument
- Interest also in using MOS capabilities of IRMS and WFOS, although not developed to key
 program status yet
- HROS is a key early light capability that will have a big impact on the science of this ISDT
- Large amount of ground-work to enable some of these ideas
 - target selection for chemical abundance studies with HROS —> MOS spectroscopy on wide field facilities at low/intermediate wavelengths
 - determination of a "representative sample" of Local Volume galaxies requires systematic and homogeneous structural analysis of thousands of objects
 - HST and Gaia will have (continue to have) a profound effect on our understanding of the MW prior to first light of TMT