## TMT+IRIS: A High-Precision Astrometry Tool for Exoplanet Follow-Up and Discovery

S. Mark Ammons (LLNL)

Benoit Neichel, Fabrice Vidal, Eduardo Marin, Gaetano Sivo, Vincent Garrel, & GeMS team

Bruce Macintosh, Dmitry Savransky, Olivier Guyon, Jessica Lu, Eduardo Bendek, James Graham, Maissa Salama

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. The document release number is LLNL-PRES-792060.

Luhman 16AB / Janella Williams / PSU



## Astrometry Exoplanet Science Cases for TMT

- 1. Mass Measurement of Directly Imaged Exoplanets with TMT IRIS
- 2. An Astrometric Search for Exoplanets Orbiting L/T Brown Dwarfs
- 3. Using GAIA Accelerations to Sort PFI Target Lists



#### Exoplanet Masses and Luminosities Constrain Planetary Formation Models



Spiegel and Burrows 2012

 Measurements of exoplanet mass will help distinguish between "hot start" and "cold start" planetary formation models



#### For Wide-Field AO, Atmospheric Tip/Tilt Jitter is a Major Error Term

- Differential Tip/Tilt Jitter is the error in measuring relative positions of stars due to high-altitude atmosphere
- MCAO actively cancels DTTJ: Use MCAO

◆ DTTJ improves as D<sup>-1</sup>



Relative astrometric error between two stars due to DTTJ



#### Precision Astrometry with TMT+IRIS Enables Exoplanet Mass Measurement



Stellar accelerations induced by simulated GPI exoplanets

- ~1/3 have masses measurable by current ground-based capabilities (~0.1 mas)
- ~1/2 measurable with TMT IRIS (0.02-0.03 mas)



#### HR 8799c+d+e Mass Measurable with TMT+IRIS



- Total astrometric signal on HR 8799 dominated by three innermost planets ( $F \sim r^{-2}$ )
- Measured acceleration is nonlinear function of c, d, e masses
- Could detect unseen planet interior to HR 8799e



### How Precise is TMT Sparse-Field Astrometry?

| -              |                                    |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
|----------------|------------------------------------|-------------------------|-------------------------|------|-------|----------------------------------------|-------|-------------------------|-------|-------|-------|---------------------|-------|------|--------|------|-------|------|-------|--|
| IMIa           | istrometry error budget            |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
| v 25 July 2014 |                                    |                         | Differential Astrometry |      |       |                                        |       | Differential Astrometry |       |       |       | Absolute Astrometry |       |      |        |      |       |      |       |  |
|                |                                    | relative to field stars |                         |      |       | science objects relative to each other |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
|                | N <sub>ref</sub> 1                 |                         | 1                       |      | 3     | 100                                    |       | 0 3                     |       | 100   |       | 0                   |       | 3    |        | 100  |       |      |       |  |
|                | Neel                               |                         | 1                       |      | 1     |                                        | 1     |                         | 2     |       | 2     |                     | 2     |      | 1      |      | 1     |      | 1     |  |
|                | N                                  | 1 1                     |                         | 3    |       | 100                                    |       |                         |       |       |       |                     |       | 1    |        |      |       |      |       |  |
|                | field                              | 1 1                     |                         | 1    |       | 1                                      |       | 1                       |       | 1     |       | 1                   |       | 30   |        |      | 5     |      | 15    |  |
|                | sep [dicocc]                       |                         | -                       |      | -     |                                        | -     |                         | -     |       | -     |                     | -     |      |        |      |       |      |       |  |
|                |                                    |                         | [uae]                   |      | [uae] |                                        | [uae] |                         | [uae] |       | [uae] |                     | [uae] |      | [uae]  |      | [uae] |      | [uae] |  |
| 67             | Telessone entics                   | 0.2                     | 7.1                     | 0.2  | [003] | 0.2                                    | [uas] | D 1                     | 7.1   | D 1   | 7 1   | D 1                 | 7 1   |      | [003]  | A 1  | [uas] | A 1  | [003] |  |
| 6.7            | Potator errors                     | D-2                     | 4.2                     | D-2  | 3.5   | D-2                                    | 3.0   | D-1                     | 4.2   | D-1   | 4.2   | D-1                 | 4.2   | A=2  | 3.0    | A-1  | 3.5   | A-1  | 3.0   |  |
| 6.0            | Actuators diffr spikes             | D-2                     | 1.4                     | D-2  | 1.2   | D-2                                    | 1.0   | D-1                     | 1.4   | D-1   | 1.4   | D-1                 | 1.4   | Δ-2  | 1.0    | Δ-1  | 1.2   | A-1  | 1.0   |  |
| 6 10           | Vibrations                         | D-2                     | 7.1                     | D-2  | 5.8   | D-2                                    | 5.0   | D-1                     | 7 1   | D-1   | 7.1   | D-1                 | 7.1   | Δ-2  | 5.0    | Δ-1  | 5.8   | Δ-1  | 5.0   |  |
| 6.11           | Coupling with atm. effects         | D-2                     | 4.2                     | D-2  | 3.5   | D-2                                    | 3.0   | D-1                     | 4.2   | D-1   | 4.2   | D-1                 | 4.2   | A-2  | 3.0    | A-1  | 3.5   | A-1  | 3.0   |  |
| 0.11           | Subtotal                           |                         | 69.7                    |      | 16.6  |                                        | 14.5  |                         | 69.7  |       | 20.3  |                     | 20.3  | ~-   | 2000.1 |      | 16.6  | ~ 1  | 14.5  |  |
|                |                                    |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
| Atmos          | pheric refraction errors           |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
| 7.1            | Achromatic differential refraction | D-2                     | 2.8                     | D-2  | 2.3   | D-2                                    | 2.0   | D-1                     | 2.8   | D-1   | 2.8   | D-1                 | 2.8   | A-2  | 2.0    | A-1  | 2.3   | A-1  | 2.0   |  |
| 7.3            | Dispersion: object spectra         | D-2                     | 7.1                     | D-2  | 5.8   | D-2                                    | 5.0   | D-1                     | 7.1   | D-1   | 7.1   | D-1                 | 7.1   | A-2  | 5.0    | A-1  | 5.8   | A-1  | 5.0   |  |
| 7.4            | Dispersion: atm. conditions        | D-2                     | 7.1                     | D-2  | 5.8   | D-2                                    | 5.0   | D-1                     | 7.1   | D-1   | 7.1   | D-1                 | 7.1   | A-2  | 5.0    | A-1  | 5.8   | A-1  | 5.0   |  |
| 7.5            | Dispersion: ADC position           | D-2                     | 1.4                     | D-2  | 1.2   | D-2                                    | 1.0   | D-1                     | 1.4   | D-1   | 1.4   | D-1                 | 1.4   | A-2  | 1.0    | A-1  | 1.2   | A-1  | 1.0   |  |
| 7.6            | Dispersion: variability            | D-2                     | 2.8                     | D-2  | 2.3   | D-2                                    | 2.0   | D-1                     | 2.8   | D-1   | 2.8   | D-1                 | 2.8   | A-2  | 2.0    | A-1  | 2.3   | A-1  | 2.0   |  |
|                | Subtotal                           |                         | 10.9                    |      | 8.9   |                                        | 7.7   |                         | 10.9  |       | 10.9  |                     | 10.9  |      | 7.7    |      | 8.9   |      | 7.7   |  |
| Pacida         | al turbulance errors               |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
| 8 2 1          | Diff TT1: plate scale              | D-2                     | 0.2                     |      | 0     |                                        | 0     | D-1                     | 0.2   |       | 0     |                     | 0     | Δ-2  | 47     |      | 0     |      | 0     |  |
| 822            | Diff TT1: higher order             | D-2                     | 4.7                     | D-2  | 3.8   | D-2                                    | 33    | D-1                     | 4.7   | D-1   | 47    | D-1                 | 47    | A-2  | 33     | A-1  | 3.8   | A-1  | 33    |  |
| 83             | PSF irregularities                 | D-2                     | 2.5                     | D-2  | 2.0   | D-2                                    | 1.7   | D-1                     | 2.5   | D-1   | 2.5   | D-1                 | 2.5   | A-2  | 1.7    | A-1  | 2.0   | A-1  | 1.7   |  |
| 8.4            | Halo effect                        | D-2                     | 4.2                     | D-2  | 3.5   | D-2                                    | 3.0   | D-1                     | 4.2   | D-1   | 4.2   | D-1                 | 4.2   | A-2  | 3.0    | A-1  | 3.5   | A-1  | 3.0   |  |
| 8.5            | Turb. conditions variability       | D-2                     | 1.4                     | D-2  | 1.2   | D-2                                    | 1.0   | D-1                     | 1.4   | D-1   | 1.4   | D-1                 | 1.4   | A-2  | 1.0    | A-1  | 1.2   | A-1  | 1.0   |  |
|                | Subtotal                           |                         | 6.9                     |      | 5.7   |                                        | 4.9   |                         | 6.9   |       | 6.9   |                     | 6.9   |      | 6.8    |      | 5.7   |      | 4.9   |  |
| Defe           | nee object and estalog survey      |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
| Refere         | nce object and catalog errors      | DC 1                    | 22.2                    | DC 2 | 22.2  | DC 2                                   | FO    | DC 1                    | 22.2  | DC 2  | 22.2  | DC 2                | FO    | DC 1 | 1000.0 | 06.0 | E0 0  | DC 2 | 10.2  |  |
| 9.1            | Proper motion errors               | PS-1                    | 167                     | PS-2 | 167   | PS-2                                   | 2.8   | PS-1                    | 167   | PS-2  | 16.7  | PS-2                | 2.8   | PG-1 | 500.0  | PS-2 | 20.0  | PS-2 | E 1   |  |
| 9.2            | Aberration gray deflection         | PS-1                    | 0.0                     | PS-2 | 0.0   | PS-2                                   | 2.9   | PS-1                    | 0.0   | PS-2  | 0.0   | PS-2                | 2.9   | PS-1 | 1.0    | PS-2 | 0.1   | PS-2 | 0.0   |  |
| 9.4            | Other                              | PS-1                    | 0.0                     | PS-2 | 0.0   | PS-2                                   | 0.0   | PS-1                    | 0.0   | PS-2  | 0.0   | PS-2                | 0.0   | PS-1 | 1.0    | PS-2 | 0.1   | PS-2 | 0.0   |  |
| 9.5            | Subtotal                           |                         | 37.3                    | .5-2 | 37.3  | .5-2                                   | 6.5   |                         | 37.3  | . 5-2 | 37.3  | . 5-2               | 6.5   |      | 1118.0 |      | 65.7  | 10-2 | 11.4  |  |
|                |                                    |                         |                         |      |       |                                        |       |                         |       |       |       |                     |       |      |        |      |       |      |       |  |
|                | Total                              |                         | 81                      |      | 43    |                                        | 21    |                         | 81    |       | 46    |                     | 28    |      | 2201   |      | 69    |      | 22    |  |
|                | lotal                              |                         | 91                      |      | -43   |                                        | 21    |                         | 91    |       | -+0   |                     | 20    |      | 2291   |      | 09    |      | - 22  |  |

- We use Schoeck et al. 2014 error budget
- Includes
  - DAR
  - DTTJ
  - S/N
  - Optical distortion
  - Calibration errors
- 20-30 µas single-epoch precision per axis for
  - V < 10
  - 15 min. exposure
  - **-** *b* < 60°
- Primary advantages of TMT astrometry over radial velocity and GAIA are:
  - Faint, red stars (M stars, red dwarfs)
  - Young FGK stars with RV jitter



#### **Comparison to Radial Velocity for Young FGK Hosts**



- Young stars targeted for direct image surveys have increased stellar jitter (50 m/s)
- Astrometry has major advantage over RV for P > 2 months
- Astrometry yields two projected components of acceleration vector (RV yields one)



#### Four Regimes: Astrometric Follow-up Strategies

| If Absolute Astrometry<br>Measurement is | And Direct Imaging<br>Status is | Then I can                                                                       |
|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|
| Significant acceleration detection       | No detection                    | Favor wedge of image, rotate dark hole, etc                                      |
| Acc. Detection with rotation             | No detection                    | Fit period, favor wedge of image                                                 |
| Acc. Detection                           | Marginal single-epoch           | Fit period / weakly<br>constrain exoplanet<br>mass                               |
| Acc. Detection                           | Multi-epoch detection           | Joint fit of orbital<br>parameters – stronger<br>constraint of companion<br>mass |

- Astrometry enables exoplanet mass measurement and improves:
  - direct imaging detection SNR
  - SNR on orbital parameters



#### GAIA provides sub-mas absolute astrometry over the entire sky

#### Telescope and Instruments Description

- Two 1.5 x 0.5 m TMA telescopes anchor long separations (106 deg separation)
- 106 CCDS of 4500 x 1966 pixels
  - Drift scanning, 60 x 180 mas pixels
- Radial Velocity Spectrometer provides > 1 km/s RV precision

#### **Mission Objectives**

- Determine 5-parameter astrometic solution (parallax, position, proper motion) at 20 uas precision at V = 15 over 5 years
- Measure atmospheric parameters (log g, [Fe/H], T<sub>eff</sub>) for V < 15</li>
- Measure orbits and inclinations of 1000 extrasolar planets





#### GAIA provides sub-mas absolute astrometry over the entire sky

#### System Status

- Telescope launched Dec 2013 and reaches L2 in Jan 2014
- Stray light caused by unexpected ice deposits
  - diffracts sunlight around the edge of the sunshield
- Larger fluctuation in Basic Angle Monitor (BAM) than expected ~ 1 mas
  - Measures angular separation of telescopes
- Saturation will be avoided for 3 < G < 12 with shorter integration times using Time-Delayed Integration mode (TDI)
- Effective short exposures (~1 millisecond) prevents star saturation for bright stars





#### **GAIA Astrometric Precision**

Error budget has been updated to include transmission loss and stray light, but not increased BAM noise

Major advantage of TMT +IRIS is at faint magnitudes (G > 13)



Mignard 2011 Fig 1, TMT+IRIS from Schoeck+14 error budget, 900 second exposure, b=20°

#### **End of Mission Precision**

|                        | B1V                              | G2V                              | M6V                              |
|------------------------|----------------------------------|----------------------------------|----------------------------------|
| V-I <sub>C</sub> [mag] | -0.22                            | 0.75                             | 3.85                             |
| Bright<br>stars        | 5-14 µas (3 mag < V < 12<br>mag) | 5-14 µas (3 mag < V < 12<br>mag) | 5-14 µas (5 mag < V < 14<br>mag) |
| V = 15 mag             | 26 µas                           | 24 µas                           | 9 µas                            |
| V = 20 mag             | 600 µas                          | 540 µas                          | 130 µas                          |

http://www.cosmos.esa.int/web/gaia/science-performance

#### Single-Epoch Precision



## Astrometry Exoplanet Science Cases for TMT

- 1. Mass Measurement of Directly Imaged Exoplanets with TMT IRIS
- 2. An Astrometric Search for Exoplanets Orbiting L/T Brown Dwarfs
- 3. Using GAIA Accelerations to Sort PFI Target Lists



## Exoplanet Occurrence Rate for L/T Dwarf Hosts Unknown



Phl.upr.edu, Jun 2014

- Planet occurrence rates for substellar hosts unknown
- Majority of planets are at high incident stellar flux or self-heated



## Short-Period Occurrence Rate around M Dwarfs is High



Howard et al. 2012

- Number of planets per stars is 2-3x greater for M dwarfs than for FGK stars
- Occurrence rate for brown dwarf hosts is unknown

#### **Precision Astrometry Enables Surveys of Brown Dwarfs**



- Exoplanet mass sensitivity curves (5-sigma) for a 5-year astrometric survey for exoplanets orbiting brown dwarfs
- Distance = 2-20 pc
- 0.02 0.04 mas TMT+IRIS precision
- 200 m/s RV precision (brown dwarf hosts)



## Test Case: Closest Known Binary Brown Dwarf WISEJ1049





Boffin+14 astrometric residuals (2 months baseline)  Closest known binary brown dwarf system – 2.02 pc

- Luhman et al. 2013
- Exoplanet announced orbiting one of the dwarfs
  - Boffin et al. 2014
  - Uses ~4-5 mas precision astrometry
- Good trial system for GeMS astrometry
  - 1 arcminute field needed for absolute reference stars
  - Can improve astrometry by 20x over Boffin+14 data



## MCMC Keplerian Orbit Fits GeMS Data to Within 0.22 Milliarcseconds (No Obvious Planet Seen...)



- GeMS delivers narrow-angle stability of ~0.2 mas over months
- GeMS' larger field needed for reference stars!
- Inconsistent with planet proposed in Boffin et al. 2014
- Total open shutter time ~ 20 minutes

## GeMS Places Neptune-Mass Limits on Companion Mass

0% detected

#### 50% detected

100% detected



Monte Carlo simulation of planet detectability, given epoch timing



## Astrometry Exoplanet Science Cases for TMT

- 1. Mass Measurement of Directly Imaged Exoplanets with TMT IRIS
- 2. An Astrometric Search for Exoplanets Orbiting L/T Brown Dwarfs
- 3. Using GAIA Accelerations to Sort PFI Target Lists

## GAIA Will Discover 21,000 Exoplanets Over 5 Years



Perryman et al. 2014 Fig 1a. Plots known exoplanets only. Symbol size proportional to planet mass.

- GAIA will measure stellar acceleration for all stars
- GAIA will produce 10-100 young (age < 300 Myr) candidates with trending, long-period acceleration
- TMT+Extreme AO will follow-up GAIA-identified "trending" candidates
- TMT+Extreme AO has ~4x improvement in inner working distance over GPI
  - ~8x improvement in period



## Diffractive Pupil for TMT IRIS



### Improving Astrometric Precision with the *Diffractive Grid*

# Dots on primary mirror create a series of diffraction spikes used to calibrate astrometric distortions



Olivier Guyon

All astrometric distortions (due to change in optics shapes and deformations of the focal plane array) **are common to the spikes and the background stars**. By referencing the background star positions to the spikes, the astrometric measurement is largely immune to large scale astrometric distortions.

## **Diffractions Spikes Map Optical Distortion**, **Prevent Star Saturation**



Carbon mask installed on Nickel Telescope (Credit: E. Bendek)

51 Per

- $\mathbf{O}$ Stiff CFRP honeycomb mounted at secondary produces diffraction spikes that map changing optical distortion
- Experiment designed to average down random errors and reveal systematics  $\mathbf{O}$
- 0 Final generation mask manufactured in San Jose and designed by Eduardo Bendek



## **A Diffractive Mask for GeMS**

- An LLNL-led visitor instrument for GeMS
- Engineering support from NASA Ames (Eduardo Bendek)
- Procurement in FY15; Installation and testing complete by summer 2016



Optical design within GeMS



AutoCAD drawing of insertion mechanism



Dot Matrix Pattern Imprinted on Mask





- 1. TMT IRIS can measure masses of half of exoplanets directly imaged by GPI/SPHERE/SCExAO
- 2. TMT IRIS can measure an exoplanet occurrence rate for L/T brown dwarf hosts
- 3. TMT PFI can follow up 10-100 young "trending" candidates discovered with GAIA