Lyman & Emission from Green Peas: Circumgalactic gas density, covering, and kinematics

Alaina Henry (NASA Postdoctoral Program Fellow, GSFC)

Claudia Scarlata (U Minnesota) Dawn Erb (UW Milwaukee) Crystal Martin (UCSB) Why do we care about Lyα emission from galaxies?

- * Ease of Observing:
 - can be the strongest line in the spectrum
 - Favorable rest-UV wavelengths (== ground observable with TMT to very high-z)
 - * Contains a wealth of information about galaxies, ISM, CGM, IGM gas!
 - * Even in the era of JWST/NIRSPEC (i.e. Ha obs), Lya is still going to be useful

Wealth of Information from Lya #1: IGM neutral fraction?

Lya deficit at z>6 suggests partially neutral IGM. But what is the fiducial for measuring a deficit?

Wealth of Information from Lyα #2: Illuminates HI in the CGM... ~100 kpc

Stellar Continuum

Lyα

Wealth of Information from Lya #2: Illuminates HI in the CGM...

Wealth of Information from Lya #2: Illuminates HI in the CGM...

...and may identify LyC leakers!

But Lyα at high-redshifts is difficult!

the faint-end slope of the Ly α LF at the end of reionization.

And Lyα detections during reionization (z~7-8)?

HST grism survey of 10 strong lensing clusters (from CLASH + Frontier Fields)

Schmidt et al. (incl AH, TBS)

<u>The data are going to get better with TMT and JWST....</u> <u>but we have to get smarter about Lyα</u>

Addressing Ly α output using local laboratories

"Green Peas" are great local analogs!

Lower metallicity, higher EWs and sSFR than most other nearby samples

COS Lya Spectra of Green Peas

- 9/10 double peaked when we observe with high spectral resolution
- Lya has higher EW,
 luminosity than other
 nearby galaxies
- * more comparable to LAEs at $z > \sim 3$

Henry et al. (2015, in press)

Still, only a fraction of the $Ly\alpha$ photons are escaping

The range of Lya / Ha flux ratios is not explained by extinction alone. E(B-V)_{gas} is uniformly low.

What is causing the variation in Ly α in these galaxies?

Maybe the UV absorption lines can help us....

Do outflows help Lya escape?

Henry et al. (2015, in press)

 Hypothesis: Lyα escapes by scattering in outflowing HI gas, shifting out of resonance with the ISM (e.g Kunth et al. 1998).

* <u>Result</u>: While the Green Peas all show Lya and outflows, there is no correlation between the two.

Does Lya get out through holes?

Hypothesis: Lyα escapes through sight-lines that are empty of neutral gas

Henry et al. (in press)

Fig from: Duval et al. (2014)

 Supported: By correlation between EW of saturated low ionization absorption and Lya emission

Does Lya get out through holes?

Fig from: Duval et al. (2014)

But: COS spectra show
 Lyman series absorption is
 opaque—> covering near
 unity

Does Lya get out through holes?

Fig from: Duval et al. (2014)

But: COS spectra show
 Lyman series absorption is opaque—> covering near unity

What about HI gas density?

Hypothesis: Lyα escapes by more easily when lower HI column density reduces the scattering.

Verhamme et al. (2015)

 Result: Lya peak velocity separation, which is a signature of HI density correlates with the Lya escape fraction.

This trend is driven
by the blue peak
velocity.

Conclusions

Local Analogs are really valuable! Green Peas have taught us a lot about Lya escape. Such as...

* Lyα escape is not explained by varying outflows and does not escape through holes in the ISM/CGM.

* HI column density seems to play the dominant role.

Direct application/comparison to reionization epoch samples (from TMT/JWST) remains a challenge to be addressed.

Better moderate to high-z data (both rest UV and optical).

* Find a way to work around Lyα forest impacted diagnostics, which were really useful in the Green Peas.