

Photoionized gaseous nebulae (emission line nebulae)

Planetary nebulae (PNe)

Giant extragalactic H II regions (NGC604)

Starburst galaxies (Izw 18)

H II regions (Orion / M42)

Distant quasars

HST

Spectroscopic Observations of Planetary Nebulae in the Substructures of M31

The 5.1m Hale Telescope at Palomar (2011–2013)
The 10.4m GTC at ORM, La Palma (2014–2015)

PI: Xuan Fang (IAA-CSIC, Spain)
Col: Martin A. Guerrero (IAA-CSIC, Spain).
Rubén García-Benito (IAA-CSIC, Spain)
Xiaowei Liu (Peking University)
Yong Zhang (The University of Hong Kong)
Haibo Yuan (Peking University)

Photometric survey of RGB stars with INT/ WFC

Enhanced metallicity in the stream relative to the halo population

A number of stellar substructures have been detected in the outer disk and halo of M31.

The most prominent are the Northern Spur and the Giant South Stellar Stream (a.k.a., the Giant Stream)

Palomar observations and target properties

- Palomar 5.1m Hale spectroscopy (visitor mode, 2011 Sept. 22–23)
- Double Spectrograph (DBSP)
- Blue arm: 1200 lines/mm, Red arm: 316 lines/mm
- Dichroic: D48
- Wavelength coverage: 3400–4900 Å, 4800–7300 Å
- Resolution: 2.4 Å in the blue, 6.9 Å in the red.

PN ID	R.A.	Decl.	<i>m</i> (5007)	V _{helio}	R _{gal}	DBSP Exp. (s)		
	(J2000)	(J2000)		(km/s)	(kpc)	Blue Arm	Red Arm	
PN1 (2426)	00:47:00.69	42:58:55.20	20.61	-19.6	25.9	8 × 1800	8 × 1800	
PN2 (2431)	00:47:58.60	43:00:06.48	20.83	-44.4	27.2	8 × 1800	8 × 1800	
PN3 (2421)	00:45:42.60	42:55:26.30	20.84	-90.3	23.9	6 × 1800	6 × 1800	

2D blue spectrum of PN3 obtained at the 5.1m Hale Telescope

Upper: The raw data. *Lower*: After wavelength calibration and background subtraction.

Follow-up work: GTC spectroscopy of PNe in the Northern Spur and the Giant Stream of M31.

Purpose of the program: To further study the origin of substructures using high-quality PNe spectra.

The 10.4m Gran Telescopio Canarias

GTC observations and target properties

- GTC OSIRIS spectroscopy (in service mode, 2014 Aug. 23–29)
- Total time allocated: 15 hours
- Clear nights, seeing 0.5"–0.8"; 1" wide long slit
- Two CCDs (CCD1 + CCD2), 2k×4k each, 0.127"/pixel
- Grism R1000B, 1000 lines/mm, $\lambda_c = 5455 \text{ Å}$
- Wavelegnth coverage: 3630–7760 Å
- FWHM ~ 6 Å (2.06 Å/pixel)

PN ID	R.A. (J2000)	Decl. (J2000)	т ₅₀₀₇	V _{helio} (km/s)	R _{gal} (kpc)	GTC exposure (s)
PN1 (2445)	00:45:52.8	42:36:52.9	20.65	-149	20.1	4 × 1250
PN2 (2451)	00:46:59.3	42:37:58.2	20.81	-81	21.6	4 × 1250
PN3 (2427)	00:46:26.5	43:00:43.0	20.48	-420	25.7	4 × 1250
PN4 (77)	00:43:32.3	41:58:42.5	20.99	-579	9.93	4 × 1200
PN5 (586)	00:43:07.9	41:28:45.5	20.82	-713	3.05	4 × 1200
PN6 (2750)	00:42:40.3	41:19:07.4	21.23	-766	0.70	4 × 1200
PN7 (LAMOST)	00:49:29.0	37:50:45.4	21.51	-203	50.2	4 × 2400 1 × 1200

OSIRIS: Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy

CCD1 + CCD2: 2048×4096 pixels each, 0.127" per pixel; Standard observing modes: 1k×1k binned; 0.254" per pixel.

GTC OSIRIS 2D spectrum of PN7

Upper: The raw data

Lower: The 2D spectrum after image combine (4×40min), cosmic-ray removal, wavelength calibration, geometry rectification, and background subtraction; the inset shows the H γ , [O III] λ 4363, and [N II] λ 5755 lines.

GTC OSIRIS 1D spectrum of PN7

Abundance correlations: N/O vs. He and O

Red filled circles – PNe sample of this study Red open circles – PNe sample observed by Fang et al. (2013) using 5. Hale Black filled circles – PNe sample of Kwitter et al. (2012) and Balick et al. (2013) Black open circles – PNe sample of Jacoby & Ciardullo (1999) Black open triangles: the Galactic Type I PNe of Milingo et al. (2010) Green dots – H II regions and metal-poor galaxies from Izotov & Thuan (1999) and Izotov et al. (2012) Blue dots – M101 H II regions of Kennicutt et al. (2003) Magenta dots – M31 H II regions of Zurita & Bresolin (2012)

Ne/H vs. O/H Ne/O vs. O/H C -0.5 8 \cap 12 + log(Ne/H) log(Ne/0)7.5 -1 7 Ο Ο -1.5 6.5 8.8 8.2 8.4 8.2 8.4 8.6 8.8 7.6 7.8 8 8.6 9 7.6 7.8 8 9 $12 + \log(0/H)$ $12 + \log(0/H)$

The black straight line is a linear fit to the H II region/metal-poor galaxies data of Kennicutt et al. (2003), Izotov & Thuan (1999) and Izotov et al. (2012).

The neon of M31 PNe is well correlated with oxygen.

Abundance correlations: Ne vs. O

Abundance correlations: Ar vs. O

The black straight line is a linear fit to the H II region/metal-poor galaxies data of Kennicutt et al. (2003), Izotov & Thuan (1999) and Izotov et al. (2012).

The argon of our sample is generally correlated with oxygen; but the sample of Kwitter et al. (2012) have systematically lower argon abundances.

Abundance correlations: S vs. O

The black straight line is a linear fit to the H II region/metal-poor galaxies data of Kennicutt et al. (2003), Izotov & Thuan (1999) and Izotov et al. (2012).

The "sulfur anomaly" (first recognized by Henry et al. 2004 in the Galactic PNe) is also present in M31 PNe: Sulfur in PNe are lower than H II regions at a given oxygen value.

The samples of Zurita et al. (2012) and Esteban et al. (2009) are H II regions; the others are PNe. PN7 is >100 kpc from the center of M31 center. Our PNe have homogeneous oxygen abundances! $<\log(O/H) + 12> = 8.54 \pm 0.11$

Summary

- We obtained long-slit spectra of 10 PNe in the substructure of M31
- Our GTC spectra are the deepest ever obtained for extragalactic PNe.
- Abundance analysis of our sample
 - N/O and He/H ratios indicate that PNe are Type II.
 - "Sulfur anomaly" also exists in M31 PNe.
- Our targets have *homogeneous* oxygen abundances
- Possible origin of the Northern Spur and the Giant Stream
 - Our targets are well located on the stellar orbit proposed by Merrett et al. (2003).
 - The spatial and kinematical information, combined with the homogeneity in abundances, indicates they probably have the same origin.
 - Satellites M32 might be responsible for the substructures?

Summary

• Some comments

1) So far, deep spectra of M31 PNe are still scarce.

2) Deep spectroscopy can be well obtained on 8–10m class telescopes (e.g., GTC).

3) This effort can be efficiently extended to other Local Group galaxies using the next-generation Thirty Meter Telescope (TMT).

TMT observations of PNe in nearby galaxies

- TMT Wide-Field Optical Spectrometer (WFOS)
 - Large field of view (40.5 arcmin²)
 - Broad wavelength coverage (0.31–1.0 μ m)
 - Medium resolution ($R \approx 1000-5000$)
 - MOS mode: ~100 targets at R = 1000, with complete wavelength coverage
- Deep imaging of Local Group galaxies
- Follow-up optical spectroscopy of PNe

Planetary Nebulae discovered in the Local Group (before 2006)

Magrini (2006)

Name	Т	$\log L_V$	D [kpc]	N. PNe	Reference	N. S.	Reference
M31	\mathbf{Sb}	10.43	760	2615	Merrett et al. 2006	30	Jacoby & Ciardullo 1999
M33	\mathbf{Sc}	9.51	795	152	Ciardullo et al. 2004	26	Magrini et al. 2003A
LMC	Ir	9.35	50	1000	Reid & Parker 2005	141	Leisy & Dennefeld 2006A
\mathbf{SMC}	Ir	8.79	59	132	Jacoby 2005	42	Leisy & Dennefeld 2006A
M32	E2	8.55	760	46	Merrett et al. 2006	14	Richer & McCall 2002
NGC205	\mathbf{Sph}	8.51	760	35	Corradi et al. 2005	13	Richer & McCall 2002
IC10	Ir	8.47	660	16	Magrini et al. 2003B	-	Magrini et al. 2006
NGC6822	dIr	8.35	500	17	Leisy et al. 2005	17	Leisy et al. 2006B,
							Hernandez & Peña 2006
NGC185	\mathbf{Sph}	8.19	660	5	Corradi et al. 2005	5	Richer & McCall 2002
IC1613	dIr	8.07	725	2	Magrini et al. 2005B	-	Corradi et al. 2006
NGC147	\mathbf{Sph}	7.99	660	9	Corradi et al. 2005	8	Gonçalves et al. 2006
WLM	dIr	7.61	925	1	Magrini et al. 2005B	· . .	
Sagitt.	dSp	7.47	24	4	Zijlstra et al. 2006	4	Zijlstra et al. 2006
Fornax	dSp	7.19	138	1	Danziger et al. 1978	1	Danziger et al. 1978
Pegasus	dIr	6.87	760	1	Jacoby & Lesser 1981	-	
LeoA	dIr	6.55	690	1	Magrini et al. 2003B	1	van Zee et al. 2006
NGC3109	dIr	8.27	1330	13	Leisy et al. 2006B,	12	Leisy et al. 2006B,
SextansB	dIr	7 63	1600	ĸ	Pena et al. 2006 Magrini et al. 2002	5	Pena et al. 2006 Magrini et al. 2005A
Sovtans	dIr	7.03	1390	1	Magrini et al. 2002	1	Magrini et al. 2005A
SextansA	an	1.07	1520	1	magriii et al. 2005D	1	magnini et al. 2005A

Name	Type	Mv	Dist.	PNe 2006	PNe 2011	Ref (old) 2006	Ref (new) 2011
M31	\mathbf{Sb}	-21.2	785	2766	2766	Merrett 2006	
Milky Way	Sbc	-20.9		2400	3000	Acker et al. 1996	Parker <i>et al.</i> 2006; Miszalski <i>et al.</i> 2008
M33	Sc	-18.9	795	152	152	Ciardullo et al. 2004	
LMC	Ir	-18.5	50	277	740	Jacoby 2006	Reid 2006a,b, 2011 ¹
SMC	Ir	-17.1	59	105	139	Jacoby et al. 2002	Jacoby 2006
M32 (NGC221)	$\mathbf{E2}$	-16.5	760	30	45	Ciardullo et al. 1989	Sarzi et al. 2011
NGC205	\mathbf{Sph}	-16.4	760	35	35	Corradi et al. 2005	
IC10	Ir	-16.3	660	16	27	Magrini et al. 2003	Kniazev, et al. 2008
NGC6822	dIr	-16.0	500	17	26	Leisy et al. 2005	${\rm HM}^2 et al. 2009$
NGC185	Sph	-15.6	660	5	5	Corradi et al. 2005	
IC1613	dIr	-15.3	725	3	3	Magrini et al. 2005	
NGC147	Sph	-15.1	660	9	9	Corradi et al. 2005	
WLM	dIr	-14.4	925	1	1	Magrini et al. 2005	
Sagittarius	dSph/E7	-13.8	24	3	4	Zijlstra 1999	Zijlstra et al. 2006
Fornax (E351-G30)	dSph	-13.1	138	1	2	Danziger et al. 1978	Larsen 2008
Pegasus (DDO 216)	dIr	-12.3	760	1	1	Jacoby et al. 1981	
Leo I (DDO 74)	dSph	-11.9	250				
Andromeda I	IDsPH	-11.8	810				
Andromeda II	dSph	-11.8	700				
Leo A	dIr	-11.5	690	1	1	Magrini et al. 2003	
DD 210	dIr	-11.3	1025				
Sag DIGD	dIr	-10.7	1300				
Pegasus II	dSph	-10.6	830				
Pisces (LGS3)	dIr	-10.4	810				
Andromeda V	dSph	-10.2	810				
Andromeda III	dSph	-10.2	760				
Leo II (Leo B)	dSph	-10.1	210				

Planetary Nebulae discovered in the Local Group (2006–2011)

Name	Type	Mv	Dist. [kpc]	PNe 2006	PNe 2011	Ref (old) 2006	Ref (new) 2011
Cetus*	dSph	-9.9	755				
Phoenix	dSph	-9.8	395		1		Saviane et al. 2009
Sculptor (E351-G30)	dSph	-9.8	87				
Cassiopeia (An VII)	dSph	-9.5	690				
Tucana	dSph	-9.6	870				
Sextans	dSph	-9.5	86				
Carina (E206-G220)	dSph	-9.4	100				
Draco (DDO 208)	dSph	-8.6	79				
Ursa Minor	dSph	-8.5	63				
Canes Venatici I [*]	dSph	-7.8	220				
Leo T [*]	dSph	-7.1	420				
Ursa Major*	dSph	-6.7	100				
Canis Major Dwarf*	Irr		7.6				
Canes Venatici II*	dSph	-5.8	150				
Bootes*	dSph	-5.8	60				
Ursa Major II*	dSph	-3.8	30				
LG outskirts							
GR8	dSph	-11.8	2200	0		Magrini et al. 2005	
Antlia	dSph	-15.8	1330				
NGC3109	dIr	-15.8	1330	18	20	Corradi et al. 2006	Peña et al. 2007
Sextans B	dIr	-14.3	1600	5	5	Magrini et al. 2000	
Sextans A	dIr	-14.2	1320	1	1	Magrini et al. 2003	
EGB0427 + 63	\mathbf{sIr}	-10.9	2200				

Planetary Nebulae discovered in the Local Group (2006–2011)

Thank you !