QSO host galaxies at z~3: Image reconstruction techniques

Yiping Wang National Astronomical Observatories of China ypwang@bao.ac.cn

2015/06/24 @ TMTSF2015 @ Washington D.C.

vation 3C 273

http://en.wikipedia.org

Quasar 3C 273 taken by Hubble Space Telescope. [1] Constellation: Virgo : Redshift: 0.158 Type: Blazar, Sy1, Radio source ; Mv: $^{\sim}$ -26 Notable features: optically-brightest quasar; first spectrum of a quasar Host galaxy: a giant elliptical galaxy

What TMT will bring to us ?

Motivation

J-band image (ISAAC+VLT)

Foreground star

Scharwachter et al. 2003; Courtesy: Julia Scharwacher's ppt @20 April 2007-Huatulco

The I Zw 1 System

- 1. z=0.06
- 2. Palomar Green QSO with
 - a spiral host
- **3.** Possily minor merger
- 4. Possibly transition stage
- 5. Narrow-line Seyfert I, probably
 - young stage of nuclear activity

(Mathur et al. 2000)

6. Black hole mass, small BH, QSO in formation?

Motivation

- 1. z=0.367
- 2. radio source
- 3. Mv ~ -25
- first solid identification of a quasar 4. host galaxy
- possibly two interacting galaxy 5. centers,

as a major merger "Antennae"-like merger?

~ 1" to the NE of the QSO nucleus, possibly two merging nuclei?

Motivation

Signs of two galaxy centers, as a major meger

Signs of SF enhanced by tidal interaction, possibly a minor meger

Sanders et al. 1998 Merger-driven Evolutionary sequence from **ULIGs to QSO**

> ACS's coronagraph reveals a spiral plume wound around the QSO, a red dust lane, a blue arc and clump in the path of the jet blasted from the QSO.

5

Scaling relation in BH mass domain

Walter et al.2004;Peng et al. 2006;McLure et al. 2006;Riechers et al. 2008;Merloni et al. 2010;Wang et al. 2010,2012

Scaling relation over cosmic time

Bennert[2011][M_{bulge}] Merloni[2009][M_{tot}] Jahnke[2004][M_{tot}] Schramm[2013 in prep.][M_{bulge}] Schramm[2008][M_{tot}] 0.01 MIR-AO MIR-AOMIR-

Obj.	Type	RA(J2000)	DEC(J2000)	\mathbf{Z}	R_{mag}	
UM 402	RQQ	$02 \ 09 \ 50.71$	-00 05 06.6	2.855	15.8	
PSF star		$02 \ 09 \ 54.51$	-00 05 34.0		16.6	
Guide star		$02 \ 09 \ 52.84$	$-00\ 05\ 15.2$		13.8	

IRCS+AO observation of UM402 at z~3 A faint tidal tail? 5" x 5", AO corrected FWHM~0."2 LLS absorber candidate Q50 UM402 AO corrected FWHM~0."13 nearby galaxy resolved by SDSS et al.

1) 2".4 north of the QSO sightline. The candidate is indicated in the image.

Wang et al. 2013, 2015

- 2) impact parameter of \sim 19.6 kpc, if at z \sim 2.53.
- 3) apparent K-magnitude m=21.91+/-0.26, as well as a red color J-K~1.6

QSO host galaxy decomposition and analysis QSO images: I(x,y)=Q(x,y) * P(x,y) + c(x,y)Q(x,y) =nucleus +host galaxy

2D modeling for PSF subtraction problems :
1)GALFIT (Peng et al. 2002)
2)AIDA (Uslenghi &Falomo, 2007)
3)GALPHAT (Yoon et al. 2011) (assuming error-free PSF)

PSF variability: time & spatial variability

The Karhunen-Loeve Image Projection approach (KLIP):

(assuming a library of reference PSFs, a K-L transform of these references is used to create an orthogonal basis of eigenimages on which the science target is projected (Soummer et al. 2012).)

1) Optimal PSF subtraction

3. Compute the estimation of the actual PSF from the projection of the target image on the truncated KL basis:

$$\hat{I} = \sum_{k=1}^{K_{klip}} < T, Z_k^{KL} > Z_k^{KL}$$
(3)

Then the final reduction image

$$F = (I - \hat{I}) + (A - \sum_{k=1}^{K_{klip}} < A, Z_k^{KL} > Z_k^{KL})$$
(4)

2) Further modeling using MCMC

$$\sum_{n=1}^{N_s} (F - A_\theta + \sum_{k=1}^{K_{klip}} < A_\theta, Z_k^{KL} > Z_k^{KL})^2$$

(He et al. in preparation)

Discussion notes: