

Characterizing the EM Counterparts of Advanced LIGO sources

S. Bradley Cenko TMT Science Forum 24 June 2015

Advanced LIGO/Virgo Network

Hanford + Livingston (aLIGO), Cascina (Virgo), KAGRA (Japan), IndIGO (India?)

aLIGO Sensitivity

By TMT era, binary neutron star mergers out to ~ 200 Mpc

aLIGO Schedule

	Estimated	$E_{ m GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS	Localized
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	_	40 - 80	-	0.0004 - 3	-	-
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022 + (India)	(per year)	105	80	200	130	0.4 - 400	17	48

Expect tens of binary neutron star (BNS) detections per year in TMT era (but large uncertainties)!

Why Electromagnetic Counterparts?

- GW detectors provide chirp mass, luminosity distance, (crude) inclination angle
- * EM counterpart provides:
 - redshift (H₀?)
 - Astrophysical context (host, offset)
 - Composition (r-process nucleosynthesis)
 - Inclination

Rosswog et al., 2012

What will an EM counterpart look like?

On-axis: Short Gamma-ray Burst; Off-axis: Kilonova

On-Axis Events: Bright but Rare

Bright high-energy emission, but only ~ 1/50 events within ultra-relativistic jet opening angle

Kilonovae: r-process sites

Rosswog et al., 2012

~ 0.01 M_{sun} ejecta of neutron-rich material with $v \sim 0.2c$

Kilonovae: r-process sites

Possibly dominant site of r-process material in Universe!

Kilonovae: Predicted Light Curves

- * Time scale:
 - * 2 days in B-band
 - * 2 weeks in NIR
- * Peak magnitude (@ 200 Mpc):
 - * B ~ 25 mag
 - * R ~ 24 mag
 - * H ~ 21 mag

Do Kilonovae Exist?

- GRB130603B: Short-hard GRB
 at z = 0.36.
- Late-time (~ 1 week) "bump" in NIR light curve, with no corresponding optical signal
- Still waiting for confirmation from additional nearby shorthard GRBs

TMT GW Follow-up: Timeline

Localizations (~ 10 deg²) much too crude for TMT observations

TMT GW Follow-up: Timeline

Wide-field surveys (ZTF, HSC, LSST) will tile error regions to search for candidate counterparts

Fermi GRBs: A Trial Run with PTF

Singer *et al.*, 2012

Routinely identify optical afterglows in ~ 100 deg² *Fermi-GBM* localizations

Distinguishing Kilonovae

Expected Rates For Fast Transients										
Object	$rac{\mathcal{R}_{ m vol}}{(m Mpc^{-3}yr^{-1})}$	$z_{ m max}$	${\mathcal R}_{ m area} \ (m deg^{-2}\ yr^{-1})$	Ν	Reference					
Type .Ia WD-NS mergers WD-BH mergers AIC ELDD	$ \begin{array}{r} 10^{-6} \\ 10^{-5} \\ 10^{-5} \\ 10^{-6} \\ 3 \times 10^{-7} \end{array} $	0.5 0.06 0.06 0.06 0.14	$0.7 \\ 2 \times 10^{-2} \\ 2 \times 10^{-2} \\ 2 \times 10^{-3} \\ 6 \times 10^{-3}$	$1.4 3 \times 10^{-2} 3 \times 10^{-2} 3 \times 10^{-3} 1 \times 10^{-2}$	Bildsten et al. 2007 Thompson 2009 Fryer et al.1999 Darbha et al. 2010					
Pan-STARRS fast	5×10^{-6}	0.14	3.5	7	Drout et al. 2014					

TABLE 1

NOTE. — Expected rates for the various contaminants considered in Section 2. \mathcal{R}_{area} is computed assuming an isotropic distribution of sources in a volume defined by the comoving volume at z_{max} . The column N refers to the number of events expected during a search covering 100 deg² for 7 days. See § 2.10 or details.

Cowperthwaite & Berger, 2015

Modest number of "fast" contaminants. More "slow" transients (supernovae, AGN), but could be distinguished by light curve, color, *etc*.

TMT GW Follow-up: Timeline

Synthetic spectra show contributions from both Ni and r-process nucleosynthesis. As a result, they are clearly distinguishable from other (known) transients.

Kasen & Barnes, 2013

TMT SNR Estimates

TMT Requirements for GW Follow-Up

- * Response Time: 1 hr to days (standard queue mode)
- Instrument availability: Continuous
- Bandpass: Optical + NIR
- * Resolution: Low to moderate ($v \sim 0.3c$)