TMT in the era of LSST

aam at <u>astro.caltech.edu</u> (Caltech) Co-chair LSST Transients and Variable Stars Science Collaboration TMT Science Forum Jun 24th, 2015

Probing faint transients & variables

~0.01 mag precision photometry

Summary of high level requirements

Survey Property	Performance
Main Survey Area	18000 sq. deg.
Total visits per sky patch	825
Filter set	6 filters (ugrizy) from 320 to 1050nm
Single visit	2 x 15 second exposures
Single Visit Limiting Magnitude	u = 23.9; g = 25.0; r = 24.7; l = 24.0; z = 23.3; y = 22.1
Photometric calibration	< 2% absolute, < 0.5% repeatability & colors
Median delivered image quality	~ 0.7 arcsec. FWHM
Transient processing latency	< 60 sec after last visit exposure
Data release	Full reprocessing of survey data annually

Two 6.4-gigabyte images (one visit) every 39 seconds (15TB per night) Raw ~1000 visits each night, ~300 nights a year Data Up to 450 calibration exposures per day Can detect >10 million real time events per night, for 10 years Level Changes detected, transmitted, within 60 seconds of the ٠ observation Observe ~38 billion objects (24B galaxies, 14B stars) Level Collect ~5 trillion observations ("sources") and ~32 trillion ٠ measurements ("forced sources") in a 20 PB catalog Ν User databases and workspaces ("mydb") ٠ Level Making the LSST software available to end-users ٠ Feeding the data back to the community ٠ ω

- 1. single band, single program, static science
- 2. multi-bandpass data: ugrizy
- 3. time domain
- ... not all sky regions were created equal!

Galactic plane LMC/SMC northern Ecliptic south Galactic pole deep drilling (and other special) fields

It's likely that these regions will need a modified cadence, but not clear yet how exactly (depends on fast-evolving science drivers and the system performance)

Transients and Variable Stars Science Collaboration Co-chairs: Ashish Mahabal, Lucianne Walkowicz

Classification/Characterization Distance Scale Multiwavelength Characterization/Counterparts Cosmological Fast Transients Galactic Gravitational Waves Interacting Binaries Magnetically Active Stars Microlensing Subgroup Non-degenerate Eruptive Variables Pulsating Variables Supernovae Subgroup Tidal Disruption Events Transiting Planets

Developing roadmaps (~100 members)

roadmaps based on aims, simulations, data and lessons from other surveys [testing co-add pipeline for CRTS images]

Variability on huge range of timescales

Class	Timescale	Amplitude (Δmags)	
WD Pulsations	4-10 min	0.01 - 0.1	
AM CVn (orbital period)	10-65 min	0.1 - 1	
WD spin (int. polars)	20-60 min	0.02 - 0.4	
AM CVn outbursts	I-5 days	2 - 5	
Dwarf Novae outburst	4 days - 30 years	2 - 8	
Symbiotic (outburst)	weeks-months	I - 3	
Novae-like high/low	days-years	2 - 5	
Recurrent Novae	10-20 year	6 - 11	
Novae	10 ³ -10 ⁴ yr	7 - 15	

Slide from Lucianne Walkowicz

Expected Rate of Transients

Class	Mag	t (days)	Universal Rate	LSST Rate
Luminous SNe	-1923	50 - 400	10 ⁻⁷ Mpc ⁻³ yr ⁻¹	20000
Orphan Afterglows SHB	-1418	5 -15	3 x10 ⁻⁷⁹ Mpc ⁻³ yr ⁻¹	~10 - 100
Orphan Afterglows LSB	-2226	2 - 15	3 x 10 ⁻¹⁰¹¹ Mpc ⁻³ yr ⁻¹	1000
On-axis GRB afterglows	37	I - 15	10-11 Mpc ⁻³ yr ⁻¹	~50
Tidal Disruption Flares	-1519	30 - 350	10 ⁻⁶ Mpc ⁻³ yr ⁻¹	6000
Luminous Red Novae	-913	20 - 60	10 ⁻¹³ yr ⁻¹ Lsun ⁻¹	80 - 3400
Fallback SNe	-421	0.5 - 2	<5 x 10 ⁻⁶ Mpc ⁻³ yr ⁻¹	< 800
SNe la	-1719.5	30 - 70	3 x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	200000
SNe II	-1520	20 - 300	(38) x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	100000

Table adapted from Rau et al. 2009 by Lucianne Walkowicz

Number of transients and variables

10^6 – 10^7 per night (thats 1000/minute!)

Most of them of a typical/known nature

Characterizing them to get to the rare ones is important

The tapering down

• Ridgeway et al., arXiv: 1409.3265

How can we optimize the deployment parameters: exposure time per visit, t_{vis}, single-visit depth, m₅, the mean revisit time, t_{revisit}, and the number of visits, N_{vis}?

While each of these four parameters has its own drivers, they are not independent (scaled to nominal LSST): $m_5 = 24.7+1.25*\log(t_{vis} / 30 \text{ sec})$ $t_{revisit} = 3 \text{ days } * (t_{vis} / 30 \text{ sec})$ $N_{vis} = 1000 * (30 \text{ sec } / t_{vis}) * (T / 10 \text{ years})$

How to allocate the total observing time per position of ~7 hours to ugrizy, and how do we split allocations into individual visits?

2014, 2015 cadence meetings

Sensitivity (visit? coadd?) by filter (especially u and g), needed for several (many? all?) variable types

Phased uniformity (periodic variables): for a given period how uniformly would the lightcurve be sampled?*

Window function (per filter/all filters) FWHM, ... statistics of revisit time histogram (per filter/all filters) e.g. min/max/ median/5th & 95th percentiles

Hour angle distribution (to check aliasing), at a given sky position,

maximum difference, rms ...

20-22 Aug 2015 Bremerton

Optimization more than in Tzolk'in

Victory points == science

Large number of variables and each player wants to win.

Optimizing is (generally) a zero-sum game

Easy to make the survey "greatest" in one science

Optimization means compromise

BUT, the sum of parts is GREATER than the whole i.e. compromise does NOT mean sacrifice In other words, the players are **NOT** playing AGAINST each other

It's the best middle ground we are seeking

LSST is its own follow-up machine in a proactive way. By coming up with a good cadence we can minimize the follow-up needed. And you can help. And get the science you love done in the process.

Semantic Tree of Astronomical Variables and Transients AGN Subtype:

Feature selection strategies

Donalek et al. arXiv:1310.1976

ZTF (2016): an order of magnitude faster than PTF.

	PTF	ZTF	3800 deg ² /hour ⇒ 3π survey in 8 hours			
Active Area	7.26 deg ²	47 deg ²	> 250 observations/field/year			
Readout Time	36 sec	10 sec				
Exposure Time	60 sec	30 sec	New ZTF camera: 16 6k x 6k e2v CCDs			
Relative Areal Survey Rate	1x	14.7x				
Relative Volumetric Survey Rate	1x	12.3x				
Kulkarni/ Prince/Bellm Kasliwal	ו/					
15 Jan 2015	Existing PTF camera MOSAIC 12k Ashish Jahabal 8					

CRTS-II

- Same telescopes
- Bigger cameras and FOVs: MLS 1.5m, 1.2 -> 5 sq. deg
 CSS 0.7m, 8.2 -> 19 sq. deg

Upgrades funded and underway.

Probing faint transients & variables

~0.01 mag precision photometry

Enter TMT

- What fraction of time will be ToO?
- Capabilities of the instruments ...
- Demands of observers (only bright transients?)
- LSST/(A-)LIGO/other fractions?
- All object types (that can be done only by TMT) are fair game [Paula Szkody's talk on specific types]