Search for Population III Stars with TMT/IRMS

Bahram Mobasher

University of California, Riverside

<u>David Sobral, Jorryt Matthee, Sérgio Santos, Behnam Darvish,</u> Daniel Schaerer, Huub Rottgering, Shoubaneh Hemmati

What is needed to search for pop III stars?

- Are we at the point to search for pop III stars ?
- With present instruments, could we make such observations?
- What samples do we need?

To search for Pop III stars we need:

Strong Lyman alpha emission produced by young stars
Evidence for HeII 1640 line (ionization potential ~54 eV)
Absence of metal lines (eg. CIII] with ionization potential 48 eV)
Need spectroscopy of faint high-z systems

Lyman-a as a tool to study young galaxies and re-ionisation

narrow-band selects redshifted 1216 Å emission (optical at z>2)

- Lyα emitted by young galaxies (high EW)

- Ly α absorbed in more neutral IGM (test for re-ionisation)

Lyman-a Luminosity function z~3-6 roughly constant

Lyman-α Luminosity function at z=6.6

Evolution at all Luminosities (?)

Lyman-α Luminosity function at z=6.6

Surveys limited by cosmic variance (<1deg²)

Why we need large, multiple volumes! Sobral et al. 2015a

<u>Key things to address</u>

- Need much larger (and multiple!) volumes. Most luminous sources may be visible much earlier on (first ionised bubbles?)
- Need to spectroscopically confirm the results
- Find the most luminous sources: allowing for actual detailed studies to be conducted before JWST and/or E-ELT!

The big advantage for spectroscopic follow-up is that they will *not* look like this:

(see Bunker et al. 2013)

The widest survey ever undertaken: <u>5 deg²</u> Lyα survey (z=6.6) in UDS, COSMOS and SA22

Subaru/Suprime-cam

NB921: Lyman-α at z=6.6

UDS, 0.9 deg², NB921<26

COSMOS, 0.9 deg², NB921<25.5

<u>SA22-Deep, 0.3 deg², NB921<26</u> <u>SA22-Wide, 2.7 deg², NB921<24.2</u>

Surveys:

SDXF, UKIDSS-UDS, SpUDS, UDSz COSMOS, UltraVISTA, S-COSMOS, zCOSMOS

CFHTLS, UKIDSS-DXS

Matthee, Sobral et al. 2015, MNRAS (arXiv:1502.07355)

<u>Results</u>: 99 LAEs in UDS 15 LAEs in COSMOS 2 LAEs in SA22-Deep 18 LAEs in SA22-Wide

<u>Results</u>: 99 LAEs in UDS 15 LAEs in COSMOS 2 LAEs in SA22-Deep 18 LAEs in SA22-Wide

Ouchi et al. 2009, 2013

Lyman-α Luminosity function at z=6.6

see also: Bowler et al. 2012, 2014

Matthee, Sobral et al. 2015, MNRAS (arXiv:1502.07355)

15 min z=6.6

Spectroscopic confirmation with Keck/DEIMOS

Spectroscopic confirmation with VLT/X-SHOOTER + FORS2

DDT time, PI: Sobral

COSMOS REDSHIFT 7' (CR7) AND MASOSA' THE BRIGHTEST Z=6.6 LAES

DDT: VLT/X-Shooter + Keck/DEIMOS (~3.8 hours) DDT: VLT/FORS2 + Keck/DEIMOS (~2.4 hours) Sobral, Matthee et al. 2015 ApJ in press (arXiv: 1504.01734)

<u>CR7: X-SHOOTER: 2 hours</u> <u>Anything interesting to explain J excess?</u>

The J-band excess could be due to CIV1549, HeII1640, OIII]1661, OIII]1666 or NIII]1750

From the Xshooter near-IR spectra ONLY HeII 1640 is detected. None of the other lines were found to be significant

CR7: X-SHOOTER: 2 hoursHell 1640!6 sigma!

<u>FWHM= 130 km/s</u>

<u>Hell/Lya = 0.27+-0.09</u>

Sobral, Matthee, Darvish et al. 2015

CR7: X-SHOOTER: 2 hoursHell 1640!6 sigma!

<u>FWHM= 130 km/s</u>

<u>Hell/Lya = 0.27+-0.09</u>

>>> DDT time on SINFONI/VLT to fully confirm

Sobral, Matthee, Darvish et al. 2015

CR7: X-SHOOTER: 2 hours

SINFONI: 3 hours

<u>Hell 1640A in 2D!</u>

<u>Hell EW₀>70 A</u>

<u>Hell FWHM₀= 130</u> <u>km/s</u>

<u>Hell/Lya ~ 0.2</u>

Sobral, Matthee, Darvish et al. 2015

Apart from bright narrow Lya and Hell1640: no other emission lines detected

Sobral, Matthee, Darvish et al. 2015

This is what we have:

<u>Lya EW>230 A</u>

Measurement ^a	CR7	MASOSA	Himiko
z_{spec} Ly α	$6.604^{\pm 0.001}_{-0.003}$	6.541 ± 0.001	6.54
β UV slope	-2.3 ± 0.08		-2.0 ± 0.57
Lyo (FWHM, km s ⁻¹)	266 ± 15	386 ± 30	251 ± 21
Ly α (EW _{0,obs} , γ ^b , Å)	211 ± 20	> 206	78 ± 8
Ly α (EW _{0,obs,spec} , Å)	> 230	> 200	
Ly α (Log ₁₀ L, erg s ⁻¹)	43.93 ± 0.05	43.38 ± 0.06	$43.40 \pm 0.07^{\circ}$
Lya/NV	> 70		
Hett/Ly α	0.27 ± 0.09		
Herr (EW_0, A)	$80 \pm 20 \ (> 20)$	_	_
Hett (FWHM, km s ⁻¹)	130 ± 30		
Hett/OIII]1663	> 3		
Hett/CIII]1908	> 2.5	_	_
Photometry	CR7	MASOSA	Himiko
BVI	> 28	> 28	$> 28.7^{1}$
*	25.35 ± 0.20	26.28 ± 0.37	25.86 ± 0.20^d
NB921 2° aperture	23.70 ± 0.04	99.84 ± 0.04	92.05 ± 0.029
	and the set of the set	23.04 ± 0.04	26.30 ± 0.02
NB921 MAG-AUTO	23.24 ± 0.03	23.84 ± 0.04 23.81 ± 0.03	$23.55 \pm 0.02^{\circ}$ $23.55 \pm 0.05^{\circ}$
NB921 MAG-AUTO Y	23.24 ± 0.03 24.92 ± 0.13	23.84 ± 0.04 23.81 ± 0.03 > 26.35	23.55 ± 0.02 23.55 ± 0.05^{d} 25.0 ± 0.35^{f}
NB921 MAG-AUTO Y J	23.24 ± 0.03 24.92 ± 0.13 24.62 ± 0.10	23.84 ± 0.04 23.81 ± 0.03 > 26.35 > 26.15	$23.55 \pm 0.02^{\circ}$ $23.55 \pm 0.05^{\circ}$ $25.0 \pm 0.35^{\circ}$ $25.03 \pm 0.25^{\circ}$
NB921 MAG-AUTO Y J H	23.24 ± 0.03 24.92 ± 0.13 24.62 ± 0.10 25.08 ± 0.14	23.84 ± 0.04 23.81 ± 0.03 > 26.35 > 26.15 > 25.85	$23.55 \pm 0.02^{\circ}$ $23.55 \pm 0.05^{\circ}$ $25.0 \pm 0.35^{\circ}$ $25.03 \pm 0.25^{\circ}$ $25.5 \pm 0.35^{\circ}$
NB921 MAG-AUTO Y J H K	23.24 ± 0.03 24.92 ± 0.13 24.62 ± 0.10 25.08 ± 0.14 25.15 ± 0.15	23.84 ± 0.04 23.81 ± 0.03 > 26.35 > 26.15 > 25.85 > 25.65	$23.55 \pm 0.02^{\circ}$ $23.55 \pm 0.05^{\circ}$ $25.0 \pm 0.35^{\circ}$ $25.03 \pm 0.25^{\circ}$ $25.5 \pm 0.35^{\circ}$ $24.77 \pm 0.29^{\circ}$
NB921 MAG-AUTO Y J H K 3.6μm	23.24 ± 0.03 24.92 ± 0.13 24.62 ± 0.10 25.08 ± 0.14 25.15 ± 0.15 23.86 ± 0.17	23.84 ± 0.04 23.81 ± 0.03 > 26.35 > 26.15 > 25.85 > 25.65 > 25.6	$23.55 \pm 0.02^{\circ}$ $23.55 \pm 0.05^{\circ}$ $25.0 \pm 0.35^{\circ}$ $25.03 \pm 0.25^{\circ}$ $25.5 \pm 0.35^{\circ}$ $24.77 \pm 0.29^{\circ}$ $23.69 \pm 0.09^{\circ}$

<u>Hell EW =80 A</u> Hell/Lya~0.2

No lines except Lya and Hell

Narrow Lya and narrow Hell

<u>"Talks" like it</u> "Looks" like it "Moves" like it

<u>"Smells" like it</u>

Ok... Need WFC3 observations to spatially resolve the image

WFC3!

Actually... in the field of view of another target!

B921

Make your bet: Multiple component (s): right or wrong?

WFC3!

Actually... in the field of view of another target!

Follow-up with HST WFC3 Grism + ALMA needed to clearly reveal any traces of metals

Ideal first-light targets for JWST: confirm PopIII beyond any doubt from day 1!

... and the potential to find and study the most distant galaxies ever found at z~8.8

5 kpc

PopIII wave?

CR7

YJ Lya H

There are three possibilities to produce high luminosi ty, high EW and HeII and Ly alpha nebular lines for CR7:

AGN: This is not x-ray source. No metal lines were Detected in DEIMOS and Xshooter spectra.

WR star: CR7 is not expected to be WR star due to its very narrow HeII line (~100 km/s) compared to a WR stars FWHM of ~3000 km/s

Collapsing BH: the Ly a/HeII is higher by ~2 than what expected if this is due to a BH. Also, there is no broad lines

Matthee, Sobral et al. 2015, MNRAS (arXiv:1502.07355) Sobral, Matthee et al. 2015, ApJ (arXiv next week)

Luminous Lya emitters (~10^{43.5} erg/s) at z=6.6 much more common than thought $1.5 \times 10^{-5} { m Mpc}^{-3}$

Evolution of the Lya LF is mostly at the faint end

PopIII-like stellar populations in luminous Lya

DETECTION OF POP III STARS WITH TMT/IRMS

Number Density of Pop III stars

BROAD IRMS SCIENCE

IRMS can best be used for:

 Near-IR spectroscopy of resolved faint sources (nearby or at high-z)

✓ Spectroscopy of sources with number densities

 $\sim 10 \text{ per arcmin}^2$

Spectroscopy requiring low sky background

✓ Spectroscopy requiring high spatial resolution

✓ High spatial resolution imaging of faint sources

✓Imaging/spectroscopy of crowded fields

✓Narrow-band selection of line-emitting sources

Matthee, Sobral et al. 2015, MNRAS, in press (arXiv:1502.07355) Sobral, Matthee et al. 2015, ApJ, in press (arXiv:arXiv:1504.01734)

• Luminous Lya emitters (~ $10^{43.5}$ erg/s) at z=6.6 1.5×10^{-5} Mpc⁻³ much more common than thought

Matthee, Sobral et al. 2015, MNRAS, in press (arXiv:1502.07355) Sobral, Matthee et al. 2015, ApJ, in press (arXiv:arXiv:1504.01734)

CR7

YJ Lya H

5 kp

 Luminous Lyα emitters (~10^{43.5} erg/s) at z=6.6 1.5 × 10⁻⁵ Mpc⁻³ much more common than thought
 Evolution of the LF is mostly at the faint end
 Discovery of the most Luminous Lyα emitters at z=6.6: surprises!

Matthee, Sobral et al. 2015, MNRAS, in press (arXiv:1502.07355) Sobral, Matthee et al. 2015, ApJ, in press (arXiv:arXiv:1504.01734)

 Luminous Lya emitters (~10^{43.5} erg/s) at z=6.6 1.5 × 10⁻⁵ Mpc⁻³ much more common than thought
 Evolution of the LF is mostly at the faint end
 Discovery of the most Luminous Lya emitters at z=6.6: surprises!

