Dynamical Tracing of the Outskirts of Galaxies

Raja GuhaThakurta

University of California Observatories / Lick Observatory University of California Santa Cruz

> and Visiting faculty, Google, Mountain View

Wednesday June 24, 2015

TMT Science Forum, Washington DC

Technical advantages that TMT is expected to offer for studies of nearby galaxies

- Going beyond the tip of the iceberg: statistical studies with larger sample sizes than currently possible
- Expanding the survey volume: sampling a wider range of galaxy environments than currently possible
- Making measurements of individual objects without having to co-add samples
- Spectroscopy at low surface brightness levels: outskirts of galaxies, faint tidal streams, etc.
- Synergy with JWST, LSST, HSC, WFIRST, Euclid, etc.

A few examples of what TMT can do for Local Group / Local Volume science

- Dwarf elliptical galaxies: dark matter content; nature of their nuclei; origin of their kinematic anomalies
- Finding, measuring the masses of, and characterizing ultrafaint dwarf galaxies in the Local Group – the smallest dark matter sub-halos and constraints on baryonic physics
- Co-added spectroscopy of partially resolved starlight at low surface brightness levels
- Heating/settling of the disk of M31 and other disk galaxies: stellar velocity dispersion versus stellar age
- ✤ Accretion history and mass of the Milky Way

Characterizing dwarf satellites in the Local Group and Local Volume

 Chemical abundance measurements of old stars are very challenging with Keck

 Metallicity distribution functions of dwarf satellites from spectra of *individual* stars versus mean metallicities of dwarf satellites from *co-added* spectra Andromeda satellites resemble their Milky Way counterparts

Lucy Cheng (SIP 2011/2012; Harker School / Harvard Univ)

Kirby et al. (2013)

And II's unusual internal stellar kinematics

Ho et al (2012, ApJ)

Coadded spectroscopy of <u>blends</u> in the NGC 4449 stellar stream

Toloba, PG, et al. (2015, ApJ submitted)

Co-added spectra

Call Triplet

Stars comprising the dE nuclei appear to be younger and more metal rich on average than those comprising GC satellites

Co-added spectra

H - Alpha

Stars comprising the dE nuclei appear to be younger and more metal rich on average than those comprising GC satellites

Accretion history and mass of the Milky Way

- Leveraging the remarkable *astrometric* potential of deep, multi-epoch HST images (and ultimately JWST images?)
- Need TMT to measure radial velocties of faint blue main sequence turnoff stars in the MW outer halo

"7D" mapping of the Milky Way halo: Accretion history and mass estimate

- Proper motions from multi-epoch HST imaging and, in the future, Gaia
- Need TMT/WFOS to measure radial velocities (and especially chemical abundances) of faint MSTO stars
- Very long integrations required with Keck/DEIMOS (8 to 32 hours per mask!)

HALO7D Collaboration HSTPROMO: The HST Proper Motion Collaboration Alis Deason, Emily Cunningham, Connie Rockosi, PG (UCSC), Evan Kirby (Caltech) Roeland van der Marel, Jay Anderson, Tony Sohn (STScI) 16

HALO7D survey

Looking at and through the Milky Way

<u>HST archival legacy program</u>

- Deep multi-epoch HST imaging
- Use distant galaxies as "wall paper"
- Proper motion of ~ 1000 MSTO stars in the MW halo

<u>Keck/DEIMOS spectroscopy program</u>

- 8- to 32-hour integrations of ~ 350 MW halo MSTO stars in three northern CANDELS fields
- Radial velocities
- Chemical abundances and LOS distances
- Fillers: exquisite quality spectra of ~ 1500 distant galaxies
- Future extensions: M31 foreground fields; Fronter Fields?

Anderson, <u>Barro</u>, Brown, Conroy, <u>Cheung</u>, <u>Choi</u>, <u>Cunningham</u>, <u>Deason</u>, Faber, <u>Guo</u>, Koo, Rockosi, <u>Sohn</u>, <u>Toloba</u>, van der Marel, <u>Yesuf</u>

Sample spectra from ~ 6 hours of integration in the EGS

Sample spectra from ~ 6 hours of integration in the EGS

Typical S/N ratio at 6500Å based on ~ 6 hours of integration in the EGS

Color coding of RGB stars corresponds to CaT-based proxy for metallicity [Fe/H]

> Vargas et al. (2014a, ApJ) Vargas et al. (2014b, ApJL)

Gilbert et al. (2014, ApJ) Ho et al. (2015, ApJ)

Detailed chemical abundances of M31 RGB stars

Number of direct [Fe/H] and $[\alpha/Fe]$ measurements will go from *four* M31 field halo stars and *few tens* of members of luminous satellites to *few hundred* RGB stars in the spheroid, outer disk, and giant stream

Gilbert et al. (2014, ApJ) Ho et al. (2015, ApJ) Vargas et al. (2014a, ApJ) Vargas et al. (2014b, ApJL)

• 828 orbits, 4 years

• 6 Filters (UV-NIR)

PHAT PI: Julianne Dalcanton Keck/DEIMOS spectroscopy led by UCSC

Summary: Examples of what TMT can do for Local Group / Local Volume science

- Dwarf elliptical galaxies: dark matter content; nature of their nuclei; origin of their kinematic anomalies
- Finding, measuring the masses of, and characterizing ultrafaint dwarf galaxies in the Local Group – the smallest dark matter sub-halos and constraints on baryonic physics
- Co-added spectroscopy of partially resolved starlight at low surface brightness levels
- Heating/settling of the disk of M31 and other disk galaxies: stellar velocity dispersion versus stellar age
- ✤ Accretion history and mass of the Milky Way