The Impact of TMT on Close Binary Systems

Paula Szkody University of Washington TMT Kyoto May 24, 2016

Close Binary Systems in Milky Way

- Luminous Blue variables (~20)
- Low Mass X-ray Binaries (~100)
- Cataclysmic Variables (~2000+)

Interactive Binaries WD primary

Disk-N,DN,NL,AMCVn

Intermediate Polar

Key Science Questions:

- How many are there? (space density, distribution)
- How do they evolve? (CE, ang mom, mag field)
- Is mass lost or gained (Type Ia SN)?

How can TMT help provide answers?

Gansicke et al. 2009, MNRAS, 397, 2170 from 126 periods (disks)

To classify a variable correctly, we need:

- amplitude of variation
- color of variation
- timescale of variation (periodic or not)
- shape of variation
- spectrum of 24-27 mag TMT

After ID, followup time-resolved spectra for orbital P

L S S T

TMT Low Resolution Spectra (WFOS)

- classification of objects
- identification of white dwarfs + brown dwarfs
- find strong magnetic fields

Spectral Followup of systems found by CRTS (Woudt et al. 2012, Thorstensen & Skinner 2012, Szkody et al. 2014) V=17-19

Gemini GMOS followup of 19-22 mag CRTS sources in SDSS (Breedt et al. 2014)

8m – 45 min exposures

Followup photometry often shows non-radial pulsations -18 known

Finding WDs allows study of the instability strip for accreting sysems

Accreting Binary Pulsators have a Different Instability Strip:

Instability strip is wider than ZZ Ceti (He-Arras et al. 2006, ApJL)

Objects can stop pulsating (after outbursts + random)

Detecting L2 Brown dwarf secondaries

TMT IRIS R=4000, 10xSignal

SDSS1433+10 (V~18.5) Gemini-NIRI, R=454 Littlefair et al. 2013 WZ Sge (V~15.5) Keck-NIRSPEC, R=2300 Harrison 2016

Finding AM CVns – 3 evolution channels 50 now known, periods 10-60 min, He spectrum

- How many are there (LISA)?fast photometry
- How many in each evolution path?spectra
- What are the white dwarf masses?rv curves

WFOS medium resolution, fast readout

Rapid timescale spectra needed Eclipsing AM CVn P=28 min, eclipse=1 min

Finding Magnetic WDs – IPs and Polars

- How many are there? 10-50%?
- What are the precursors? LARPS?
- What are the masses? 0.6, 0.8(CV), 0.9(mag)
- Are IPs the Galactic Ridge Sources?

Followup of low res WFOS with med res + IRIS time-resolved spectra + photometry

IPs identified from WD spin P $\sim 1/10$ orbit period

K2-3 Intermediate Polar FO Aqr 1 day of SC observations

$$P_{orb} = 4.85 \text{ hr } P_{spin} = 20.9 \text{ min}$$

Are GRXE Polars, IPs or Dwarf Novae?

Revnivtsev et al. 2009;Hong et al. 2012(IPs); Xu et al. 2016(DN)

Need better numbers of each type in Milky Way.

Detecting Magnetic Fields: Cyclotron Harmonics

Novae- brightest and best known CVs

- What is their type and distribution in the MW and other galaxies? TMT optical+nearIR spectra WFOS
- Does the WD gain or lose mass from novae explosions? Radial velocity curves WFOS med res
- How does mass loss occur? IFS IRIS + MIRES

LSST:

will detect novae out to Virgo
useful light curves will be obtained
precursor star can be observed
TMT spectra – FeII; He/N;O,Ne,Mg novae
MICHI- dust formation and location

V723 Cassiopeiae (Nova Cassiopeia 1995) J. E. Lyke and R. D. Campbell 2009 The Astronomical Journal 138 1090

OSIRIS KeckII

V723 Cassiopeiae (Nova Cassiopeia 1995) J. E. Lyke and R. D. Campbell 2009 The Astronomical Journal 138 1090

V723 Cassiopeiae (Nova Cassiopeia 1995) J. E. Lyke and R. D. Campbell 2009 The Astronomical Journal 138 1090

 $H\alpha + [NII]$

 $[OIII]\lambda 5007$

HR Del with Gemini IFU-GMOS

Moraes and Diaz 2009 AJ

Polarimetry and Spectropolarimetry

- Identifies magnetic fields
- Gives info on accretion disks

Future wish list for TMT?

Polar ST LMi

Stockman et al. 1983

Polarization changes with view of accretion column around orbit

Detecting Magnetic Fields: Spectropolarimetry

Schmidt et al. 2005

Spectropolarimetry of Algol reveals hot spot: Lomax 2012

V=2-3.5 mag

Summary for Maximizing Science Return from TMT/LSST:

- Fast TOO with low res spectra to identify variables
- Slower science followup with medium res spectra to obtain period, composition, radial velocities, tomography
- Slower science followup with fast-readout CCD to resolve rapid timescale phenomena (AM CVn, IPs)
- IFS and spectropolarimetry to determine mass loss characteristics, magnetic fields

Prime Advantages of TMT

 Spectra of 24-25 mag objects (nearby faint sources plus brighter extragalactic) – matches single visit mag of LSST

• Time series for faint short P, low amp variables

Collaborations Needed:

- VSNet, MASTER, LSST to identify interesting candidates for followup
- Worldwide followup consortium to narrow list and organize followup
- Multiwavelength x-ray (Swift),
 Gamma-ray, radio for outbursts

ありがとうございます Arigatogozaimasu

to Kyoto organizers and NSF