TMT and Gravitational Wave Astronomy

Masaomi Tanaka (National Astronomical Observatory of Japan)

C: SXS collaboration

GW astronomy => "multi-messenger" astronomy
EM signals from GW sources
"Multi-messenger" astronomy with TMT

Dawn of GW astronomy

GW 150914

BH-BH merger $M1 = 36^{+5}-4$ Msun $M2 = 29^{+4}-4$ Msun d = 410 Mpc $^{+160}-180$ Mpc

LIGO Scientific Collaboration and Virgo Collaboration, 2016, PRL, 061102

Astrophysical impact of GW150914

LIGO Scientific Collaboration and Virgo Collaboration, 2016, ApJ, 818, L22

BH with > 25 Msun does exist

- Need low metallicity (preventing strong wind)
- BH-BH binary does exist, and such binary merges within the Hubble time
 - Progenitor: isolated system? stellar cluster? Pop III?
- Relatively high event rate
 - 2-53 Gpc³ yr⁻¹ (10⁻⁴ of supernova rate, ~10⁵ Gpc³ yr⁻¹)

Environment of such binary? => Need to pin down the accurate position

Localization ~ 600 deg²

Detection of electromagnetic (EM) counterparts is essential

Redshift (distance)Host galaxyLocal environment

LVC collaboration and EM follow-up groups, 2016, in press, arXiv:1602.08492

GW150914: Electromagnetic follow-up "multi-messenger" astronomy!

- No plausible EM counterpart

Except for possible Fermi/GBM detection (arXiv:1602.03920), but non detection w/ INTEGRAL (arXiv:1602.04180)

- EM emission from BH-BH merger?? (e.g., Nakamura+2016)

LVC collaboration and EM follow-up groups, 2016, in press, arXiv:1602.08492

Advanced GW detectors

Advanced LIGO (US, 2015-)

+ LIGO-India (India)

ADVANCED LIGO

Advanced Virgo (Europe, 2016-)

KAGRA (Japan, 2018-)

More opportunities for EM observations

Kasliwal & Nissanke 2014

GW astronomy => "multi-messenger" astronomy
 EM signals from GW sources
 "Multi-messenger" astronomy with TMT

NS-NS merger (or NS-BH merger)

NS-NS merger (~< 200 Mpc) BH-NS merger (~< 800 Mpc) ~30 (0.3-300) events/ 1 yr

Mass ejection M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c => electromagnetic emission

Hotokezaka+13, PRD, 87, 4001 Rosswog+13, MNRAS, 430, 2580

r-process nucleosynthesis

- NS merger can be the origin of r-process elements
- Event rate ~ 10⁻⁴ events/yr/Galaxy (<= GW)
- Mass ejection ~ 10⁻² Msun/event (<= Opt/IR)

Radioactive energy => optical/IR emission

Brightness of "kilonova" @ 200 Mpc

* SED peaks at red optical/NIR (T ~ 3000 K)

*brighter than 26 mag only for 2-5 days (time-domain!)

MT & Hotokezaka 2013 (see also Kasen+2013, Barnes & Kasen 2013)

Tanvir+2013, Nature, 500, 547 Berger+2013, ApJ, 774, L23

As expected by theoretical models! ==> ejection of ~0.02 Msun

A new probe for high-density matter (or NS radius)

Hotokezaka, Kyutoku, MT+ 2013

GW astronomy => "multi-messenger" astronomy
 EM signals from GW sources
 "Multi-messenger" astronomy with TMT

MT & Hotokezaka 2013 (see also Kasen+2013, Barnes & Kasen 2013)

Spectroscopy is essential

Follow-up for GW150914

Smartt et al. 2016 (see also Kasliwal et al. 2016; Soares-Santos et al. 2016; Morokuma et al. 2016)

50 deg² survey w/ 25 mag depth

>~ 1000 supernovae
and 1 GW source!

Selection by timescale, color, brightness, ...

Smoking gun: spectroscopic identification

NS merger: extremely broad-line (v ~ 0.1-0.2c), red spectra (lanthanide)

- Optical/NIR spectroscopy with WFOS+IRIS
- Rapid instrument exchange,
 and flexible ToO (< hr) <= 48 hr for JWST

"Multi-messenger" astronomy

New opportunities

- Origin of r-process elements
- High-density matter

- Hubble constant (N. Suzuki's talk)

•••

Summary

- GW and "Multi-messenger" astronomy
- EM signals from GW sources
 - Faster and fainter than supernovae
 - 22-26 mag at 200 Mpc for ~5 days
- TMT in the era of "multi-messenger" astronomy
 - Spectroscopic identification is crucial
 - Opens new opportunities to study
 Origin of r-process elements
 - High-density matter

- ...