A Fast Path to Imaging and Characterizing Habitable Exoplanets around the Nearest Stars with TMT

Olivier Guyon

National Institutes for Natural Sciences (NINS) Astrobiology Center Subaru Telescope, National Astronomical Observatory of Japan University of Arizona JAXA

SCExAO team + instrument teams

Subaru Coronagraphic Extreme Adaptive Optics

May 26, Kyoto

Most exciting science case: spectroscopic characterization of Earth-sized planets with TMT

TMT coronagraph design for 1 I/D IWA

WFC architecture 5 key requirements

[1] High-efficiency WFS

M stars are not very bright for ExAO \rightarrow need high efficiency WFS For low-order modes (TT), seeing-limited (SHWFS) requires (D/r0)^2 times more light than diffraction-limited WFS (Pyramid) This is a **40,000x gain for TMT** (assuming r0=15cm) \rightarrow 11.5 mag gain

[2] Low latency WFC (High-speed WFS + predictive control) System lag is extremely problematic \rightarrow creates "ghost" slow speckles that last crossing time

Need ~200us latency (10 kHz system, or slower system + lag compensation)

[3] Multi-wavelength WFC

Wavefront chromaticity is a serious concern when working at ~1e-8 contrast Visible light (~0.6 – 0.8 um) photon carry most of the WF information, but science is in near-IR

[4] System architecture must address non-common path errors

It doesn't take much to create a 1e-8 speckle !

[5] Telemetry

WFS telemetry tells us where speckles are \rightarrow significant gain using telemetry into post-processing

Contrast limits

Assumptions:

```
I mag = 8 (WFS – 100 targets)
H mag = 6 (Science)
```

Noiseless detectors 1.3 I/D IWA coronagraph 30% system efficiency 40% bandwidth in both WFS and science Time lag = 1.5 WFS frames

Mauna Kea "median" atmosphere

30m: SH-based system, 15cm subapertures

Limited by residual OPD errors: time lag + WFS noise kHz loop (no benefit from running faster) – same speed as 8m telescope >10kph per WFS required

Detection limit ~1e-3 at IWA, POOR AVERAGING due to crossing time

[1+2] 30m: Pyramid-based system

More sensitive WFS, can run faster (10kHz) with ~10 kph per WFS frame Limited by atmosphere chromaticity

~((D/CPA)/r0)^2 flux gain: ~10,000x in flux = 10 mag near IWA Sensitivity now equivalent to I mag = -2 with SHWFS

[1+2+3+4] 30m: Pyramid-based system + speckle control afterburner

300Hz speckle control loop (~1kHz frame rate) is optimal

Residual speckle at ~1e-6 contrast and fast \rightarrow good averaging to detection limit at ~1e-8

WFC architecture : proposed approach

System architecture with instrumentation

Can we do it ?

Technology exists NOW (except for DM) – We are NOT WAITING for new technology

- **High performance coronagraphs** working well beyond contrast requirement in lab (space development), and implementations for segmented pupils are being built and tested
- Photon-counting detectors now exist in visible (EMCCD) and near-IR (SAPHIRA, MKIDS)
- WFS solutions have been demonstrated in controlled (stable) environment: unmodulated Pyramid WFS, speckle control, LOWFS, and some of it demonstrated on-sky

However, most of what we need has never been tested on sky and integrated into a system \rightarrow this is what we need to do NOW on current large telescopes

This is what the SCExAO program at Subaru is doing now

It takes yrs of hard work to put all of this together, learn what works, and optimize algorithms / designs (including data reduction) The SCExAO platform provides a welcoming environment to do this work

Subaru Coronagraphic Extreme Adaptive Optics

Wavefront sensing:

- Non-modulated pyramid WFS (VIS)
- Coronagraphic low order wavefront sensor (IR) for noncommon tip/tilt errors
- Near-IR speckle control

2k MEMS DM

Numerous **coronagraphs** – PIAA, Vector Vortex, 4QPM, 8OPM, shaped pupil (IR)

Broadband diffraction limited internal cal. Source + phase turbulence simulator

SCExAO modules

The wavefront control feeds a high Strehl PSF to various modules, from 600 nm to K band.

Visible (600 - 950 nm):

- VAMPIRES, non-redundant masking, polarimetry, soon H-alpha imaging capability
- **FIRST**, non-redundant remapping interferometer, spectroscopic analysis
- **RHEA**, single mode iber injection, high-res spectroscopy, high-spatial resolution on resolved stars

IR (950-2400 nm):

- **HiCIAO**, high contrast imager, y to K-band
- **SAPHIRA**, high-speed photon counting imager, H-band (for now)
- CHARIS, IFS (J to K-band), just delivered! Commissioning in 2 months
- MEC, MKID detector, high-speed energy discriminating photon counting imager (y to J-band), delivery in early 2017
- NIR single mode injection, high throughput high resolution spectroscopy. Soon will be connected to the new IRD
- NULLER \rightarrow GLINT

CEAP Subaru Coronagraphic Extreme Adaptive Optics

CEAP Subaru Coronagraphic Extreme Adaptive Optics

CENER Subaru Coronagraphic Extreme Adaptive Optics

CEAP Subaru Coronagraphic Extreme Adaptive Optics

Coronagraphs

Deformable mirror

Subaru Coronagraphic Extreme Adaptive Optics

System architecture with instrumentation

SCExAO @ Subaru (2017)

Low latency WFC in visible light at the diffraction limit sensitivity

2000 actuators MEMs DM running at 3.6 kHz deep depletion EMCCD

Subaru Coronagraphic

Extreme Adaptive Optics

Non-modulated pyramid WFS cannot rely on slope computations \rightarrow full WFS image is multiplied by control matrix

Now delivering 70-80% SR in H

Recent upgrade allows 3.6kHz loop operation with zonal and modal reconstruction

 \rightarrow low-latency control

 \rightarrow modal reconstruction for predictive / LQG control (under development)

SCExAO uses 30,000 cores running >1GHz

One of two GPU chassis

Ref: Singh et al. 2015

FIG. 5.— Calibration data for the APF-WFS acquired by the SCExAO science camera. Top left: the reference PSF, acquired with the system in its starting state. From left to right and top to bottom: the PSF after the corresponding Zernike mode has been applied. A non-linear scale is used to better show the impact of a 30 nm RMS DM modulation.

FIG. 6.— Experimentally recovered Zernike modes. Save for the spherical aberration, one will observe that the modes extracted from the analysis of the images of Fig. 5 do reproduce the features expected after looking at the theoretical reconstructed modes presented in Fig. 4.

Focal plane WF control (Martinache et al. 2016)

Closed-loop focal plane wavefront control with the SCExAO instrument Martinache, Jovanovic & Guyon A&A, 2016

FIG. 8.— Illustration of the impact of the APF-WFS. Left: 0.5 ms PSF acquired by SCExAO's internal science camera after the upstream AO loop has been closed. Right: identical exposure acquired 30 seconds after the APF-WFS loop has been closed. Despite residual imperfections due to dynamic changes, the PSF quality is obviously improved.

speckle nulling results on-sky (June 2014)

Single frames: 50 us

Meta data: Date: 2nd or June Target: RX Boo (also repeated on Vega) Seeing: <0.6" AO correction: 0.06" post-AO corrected in H- band (0.04" is diffraction-limit) Coronagraph: None (used Vortex on Vega)

Sum of 5000 frames: shift and add

Martinache, F. et. al.

Coherent Speckle Differential Imaging

4.08e-11 8.10e-08 2.43e-07 4.85e-07 8.09e-07

Speckle control: future steps

SAPHIRA camera allows high speed speckle control → we will try in July 2016 (new readout electronics ready as of may 2016)

MKIDs camera to be deployed in early 2017

 \rightarrow higher speed/sensitivity, wavelength information

SAPHIRA Infrared APD array

HgCdTe avalanche photodiode manufactured by Selex

<u>Specifications</u> 320 x 256 x 24µm 32 outputs 5 MHz/Pix

50 frame average

SAPHIRA + SCEXAO

MKIDS camera (built by UCSB for SCExAO)

Photon-counting, wavelength resolving 100x200 pixel camera

Pixels are microwave resonators at ~100mK photon hits \rightarrow resonator frequency changes

Electron-injector nearIR camera (Northwestern Univ / Keck foundation)

High resolution spectroscopy: SCExAO feeding IRD

Jovanovic, Kawahara, Kotani, Guyon

- H-band is most useful for self-luminous planets.

J-band is less useful for the self-luminous one although it's very important for habitable planets.
Y-band exhibits worse contrast in general, and it's just important for UV absorbers (TiO & VO) in hot planets (>~2000K).

Table 1. Important molecules in Y, J, and, H bands

band	modlecules
У	TiO, VO, FeH, H2O
J	CH4(weak), H2O, FeH, Fe(5-6 lines), K(4 lines), Na(2 lines)
Н	CH4, C2H2, CO2, NH3, CO(weak), H2O, FeH

Figure 1. HITRAN Line Intensity (T=1000K)

Simultaneous spectroscopy of planet and background speckles

Spectroscopic characterization of exoplanets Exoplanet search using high spectral resolution signatures as differential signal

RHEA: Replicable High-resolution Exoplanet & Asteroseismology (M. Ireland & C. Shwab)

The main specifications of RHEA@Subaru are:

Spatial Resolution	8 milli-arcsec	-
Spectral Resolution	R~60,000	
Total Field of View	\sim 4 arcsec	
Instantaneous Field of View	40 milli-arcsec	Doublet -
IFU Elements	9 (with dithering capability)	E/#
Spectrograph Total Efficiency	40%	Trius SX-694
Injection Unit Efficiency	Strehl \times 0.6	L

RHEA first light @ Subaru: Eps Vir (detail) Feb 2016

Near-IR photonic spectrograph @ SCExAO

(Jovanovic et al.)

Figure 3. (Left) Schematic of the key components of an AWG. (Right) Microscope image of the a section of the array of waveguides for a typical AWG device.

Figure 4. (Top) An AWG directly bonded to an integrated PL. (Bottom) AWG in a low resolution cross-dispersed setup. VPH -

SCExAO Path to TMT

Decouple SCExAO evolution from "woofer" stage

2 major upgraded of woofer stage:

2019: Replace AO188 by subscale woofer stage

- Same actuator pitch and technology on Subaru as final 120x120 DM on TMT
- Near-IR capable pyramid WFS feeds woofer
- ADC, image rotator development
- Implement new thermal IR output port

2023: Upgrade woofer stage to TMT hardware Uses 120x120 DM

Provides ~2 yr of FULL system testing on Subaru prior to TMT deployment

SCExAO @ Subaru (2017)

SCExAO @ Subaru (2019)

SCExAO @ Subaru 2023

Instrument modules

Existing modules (MKIDs, CHARIS, IRD) could be used as-is on TMT system

... but can be greatly improved

Visible light modules (not core science) – come along if ready, but <u>do not drive design</u> May not receive light during prime science (science-based) Note: there is value in characterizing star and exozodi dust in vis light

Relationship to 2nd gen instrument

Why consider deploying a precursor ?

High impact science at first light: habitable planets reflected light spectroscopy around the nearest stars

Focusing on a single goal, small number of targets to meet schedule & schedule

Workforce development – attract junior researchers to participate in instrument development AND science on 8m telescope to then drive TMT instrument building/operation/science

Risk mitigation for 2nd generation instrument

Learn what works... what needs fixing (instrument/algorithms AND telescope)

Opens up opportunities for a more incremental approach:

Test subsystems / components on precursor Develop and validate ON SKY : hardware, algorithms

TMT precursor starts NOW on 8m telescope(s) (SCExAO)

Extensive testing on 8m telescope(s) + modeling for jump to larger aperture will mitigate risks and avoid lengthy engineering/learning on TMT. Fully characterized instruments + algorithms (& yrs of experience) would be deployed on TMT

Lessons learned: Telescope does matter (LWE, vibrations)

The PSF stability is disturbed by telescope vibrations

- Induced by the telescope motions and the pointing loops
- Particularly strong during the transit of the target
- A Linear Quadratic Gaussian (LQG) contoller, based on a Kalman filter, is used to correct the vibrations
- An identification loop finds the vibration frequencies in realtime (similar to SPHERE)

