The Future of Infrared Surface Brightness Fluctuation Distance Measurements

Joseph Jensen Kyoto, May 26, 2016

The Future of Infrared Surface Brightness Fluctuation Distance Measurements

Key Points:

- Not all distance techniques are "time domain"!
- IR SBF will be part of a 1% precision H_o effort.
- MCAO requires additional calibrations to overcome field distortions and to constrain the photometry.

Why do we need to measure accurate distances?

A value of H_0 accurate to 1% has the potential to reveal new physics, such as time variations in the Dark Energy equation of state, or the masses and numbers of relativistic neutrinos.

Why do we need to measure H_o to 1%?

Cosmological parameters are determined through joint constraints of different techniques at different redshifts.

Systematic errors can only be reduced by crosscomparisons between different techniques

Precision Cosmology

- $\Omega_{\Lambda} = 0.692 \pm 0.010$
- $\Omega_{\rm DM} = 0.258 \pm 0.004$
- $\Omega_{\rm b} = 0.0482 \pm 0.0005$
- $\Omega_{\rm k}$ = -0.0005 ± 0.0065
- Age = 13.798 ± 0.037 Gyr
- h = 0.678 ± 0.0077
- $w = -1.13 \pm 0.24$
- z(reionization) = 11.3 ± 1.1
- Neutrino mass < 0.23 eV

Joint constraints: Planck XVI (2013)

CMB vs. Locally-calibrated H_o

<u>Planck 2013 results</u>: $H_0 = 67.3 \pm 0.7 \text{ km/s/Mpc}$

 Based on ACDM + Planck CMB

 $H_{o} = 69.3 \pm 0.7 \text{ km/s/Mpc}$ Including all CMB+BAO Riess et al. 2016

 $H_{\rm o} = 73.0 \pm 1.8 \text{ km/s/Mpc}$

SNe la distances

 calibrated using direct
 Cepheid, NGC 4258
 maser, and DEB
 geometrical distances

This represents an uncomfortable 2- to 3-σ discrepancy.

Planck collaboration (2013)

Surface Brightness Fluctuations

Distant galaxies appear smooth compared to nearby ones.

M 32 (0.77 Mpc)

SBFs: a Complementary Technique

SBF can't reach z>1 like supernovae, but...

- SBF provides a luminosity distance indicator independent of la supernovae
 - Different types of galaxies
 - Different types of stars
 - Different age stars
 - Different stellar environment

SBF allow targeted surveys of the nearby universe

Advantages of IR SBF Distances

- SBFs are much more luminous in the NIR
 - Dominated by luminous RGB stars
- Increased contrast with contaminating globular clusters and background galaxies
- Image quality is better in the near-IR
- Dust extinction is much lower than in the optical
- Crowding/blending are not an issue
- Comparable accuracy to SNe
- BUT...
- IR SBF are sensitive to young populations and AGB stars, so we avoid the bluest ones
- Also depends on the Cepheid calibration

A couple of examples: NGC 5128 (Cen A) with the GeMS MCAO system

ESO 137G-006 (Norma Cluster)

50× faster than Gemini

5× farther than HST/WFC3

IR SBFs with MCAO: Lessons Learned

- Overheads can really kill you.
 Not every observation is long.
- Astrometric reference is needed to stack images even if astrometry is not critical.
- Photometric reference is also critical.