Constraints on the identity of dark matter with strong lensing

Ran Li National astronomical observatories of China

COCO simulations Bose+ 2016

Subhalo detection with strong lensing

Vegetti et al. 2012

Subhalo mass function in COCO

Monte Carlo simulation

Constraints with NIens=100, MIow=10⁷ Msun

How many subhaloes do we

Sensitivity function

Li et al in preparation

Forecast for Hubble-like imaging survey

- Assuming M200=1e13 Msun
- Nlens=1000, using SLAC sensitivity maps
- 19 subhaloes detected
- Almost no constraints on the lower limit of m_c

Li et al in preparation

Mlow vs. Nlens

- Black: N=1000, SLAC like survey. Detected subhalo=19
- Red N=100 (TMT like), Mlow=0.1xMlow_SLAC, Detected subhalo=12
- Dashed vertical line: m_c of COCO-WARM

Li et al in preparation

Subhalo mass determination

Summary

- Subhaloes detected from Einstein ring systems provides a promising way to distinguish WDM and CDM model.
- Decreasing M_low is much more important than increase Nlens
- Euclid can find ~10^5 lenses. For TMT: 100 lenses with M_low=10e7 Msun, can easily rule out 3.3keV WDM.
- We need more tests on mass determination.