
GAS: the Galaxy Assembly Spectrograph

Michael Pierce (University of Wyoming)

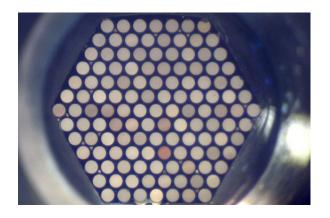
TMT Focal Plane: the Most Expensive Real Estate in the World

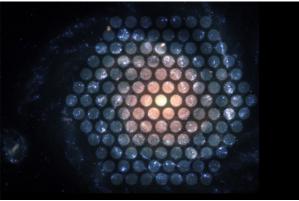
- Developers Value TMT Focal Plane at > \$1.6B
- 35,000 x Higher Than Most Exclusive Real Estate
- We Need to Maximize Scientific Return!
- One Way: Multi-Object IFU
 Spectroscopy Near
 Diffraction Limit

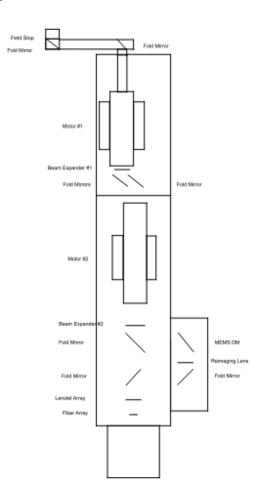
Developers: \$13,000 per Square Foot

Representative Science Cases for Multi-Object IFU Spectroscopy

- Assembly of Disk Galaxies (see Lemoine-Busserolle et al.)
 - Characterizing Disks, Star Formation Rates, Bulges & Bars, Abundance Gradients
- Assembly History of Ellipticals and S0s (see Pierce)
 - Velocity Dispersion Distribution Function, Fundamental Plane Population, Complex Internal Velocity Fields, Wet vs. Dry Mergers
- IFU Spectroscopy of Galaxy Clusters and Strongly Lensed Systems (see Dell' Antonio)
 - Assembly Cluster Populations
 - Magnification of High-z Galaxies
 - Cosmology
- Many Additional High-z Galaxy Science Cases
- Nearby Universe As Well
- IRIS Extremely Capable but Large TMT Surveys are Possible with MO-IFUs
 - Requires Multi-Object Adaptive Optics


Multi-Object AO Considerations


- MOAO: Encircled Energy is 50% within 0.05 arcsec Over Field Radius of 150 arcsec (5 arcmin Diameter, 2' with NIFIAROS)
- Number of IFUs Depends on Specific Science Case
 - Spectrograph Collimated Beam Will Scale as D_{IFU}² (Pseudo Slit Length)
 - Spectrograph Cost Will Scale as D²_{Beam} or D_{IFU}⁴
- Many Science Cases Strongly Benefit from Independently Configurable Spectrographs
- Cost for Spectrographs Scale Linearly (or Less) with Number
 - Cost Trade-off Between Larger IFUs and the Number of IFUs (Spectrographs)
 - Native (f/15) Plate Scale a Poor Match for Fiber IFUs (f/7.5 lenslets)

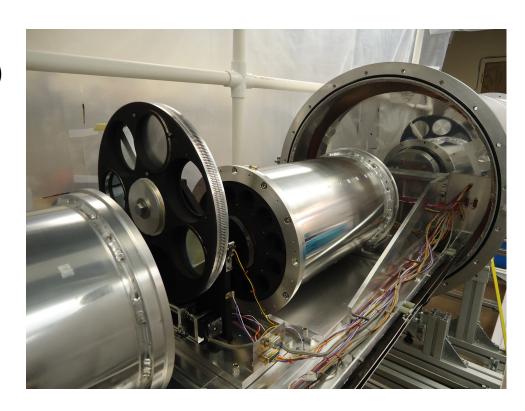

Detector	Pixels	# Spect.	IFU Spax.	IFU Size (120 μm Fibers)
Hawaii1	1024/18	204	14 x 14	1.54" x 1.54"
Hawaii2	2048/18	408	20 x 20	2.20" x 2.20"
Hawaii4	4096/15	819	28 x 28	3.08" x 3.08"

GAS Concept

- Infrared (K-band) Transmitting Optical Fibers
 - Historically Exotic and Expensive
 - Recent Development of Extremely Low OH Fibers from PolyMicro
- Adopt DESI Robotic Fiber Positioners (θ - θ)
 - Addition of Ball Lenses to Couple Fibers to Telescope Pupil
 - Adapt Positioners for Cryogenic Operation
 - Build DMs into Positioners
 - Manga-like IFUs Instead of Individual Fibers (+Lenslets)
 - Cool Fiber Cables and Feed Individual Spectrographs
 - Build Commodity Spectrographs
- Concept Completely Scalable
 - Build a Some Now and More Later

GAS MOAO Focal Plane

NIFIRAOS+GAS


- GAS Would Use DESI/PFS Positioner θ-θ Design but Larger Diameter (50 vs. 6 mm)
- MOAO Still Requires Low-Frequency Correction and Tip-Tilt (NIFIRAOS)
- GAS DMs Provide Higher-Order Correction
- Will D = 15-20mm (30 x 30) DMs
 Provide Sufficient Correction? (Target = 50% Enc. Energy, within 0.05")
- GAS Positioners within Large Diameter (650mm) Dewar with Cryo-Cooling
- Design Fully Scalable
- GAS Would Allow Up to ~ 30 IFUs
- Only Positioner Dewar Rotation
- Question: Should Wave-Front Sensors Be Located on Each Positioner?
- Is NIFIRAOS Only Option for Low-Order Correction?
 - TMT-AGE Wider FOV (5')

GAS Spectrographs

Spectrograph Design

- Based on FLAMINGOS (Florida) and NIIS (Wyoming)
 - 4 Element Collimator
 - 6-8 Element Camera
- Multiple VPH Gratings (R > 3500)
- Fiber Cable Forms Pseudo-slit
 - Backlighting of IFUs for Targeting
- Number Depends on IFU ForeOptics:
 - NIFIRAROS: 30 IFUs, (2.2" x 2.2")
 - TMT-AGE: 180 IFUs, (2.2" x 2.2")
- Modular Design
 - Separately Configurable for Each Target (Resolution, λ , z)
 - Suitcase Spectrographs
 - Stacked for Small Platform Footprint
 - Easily Changed Out

Wyoming's Near Infrared Camera

Summary

- GAS Could Provide MO-IFUs
 - 2 arcmin FOV limited by NIFIRAOS
 - TMT-AGE Fore-Optics Would Allow 5 arcmin FOV (see Akiyama et al. Poster)
- θ - θ Positioner Design from DESI
 - Manga-like IFUs (20 x 20, 0.1 arcsec fibers)
 - Patrol Radius 18 arcsec, 28 arcsec pitch)
 - Size (e.g., 2.2" x 2.2") and Number Scales with FOV
- Spectrographs
 - Traditional Collimator-Camera Transmissive Design
 - Based on FLAMINGOS (Florida) and NIIS (Wyoming)
 - 4 Element Collimator
 - 6-8 Element Camera
 - Y, J, H, K Coverage with Multiple VPH Gratings (R: 3500+)
 - Fiber Cable Forms Pseudo-slit
 - Backlighting for Targeting
 - Separately Configurable (Resolution, λ , z)
 - Suitcase Spectrographs
 - Stacked for Small Footprint
 - Easily Changed Out
- Concept Paper Planned for 2017 Call (Collaborators Welcome)