TMT Observations of GRBs & SNe as Early Universe Probes

Pete Roming – Southwest Research Institute

(with acknowledgements to Antonino Cucchiara, Koji Kawabata, Bruno Leibundgut, Bahram Mobasher, Masaomi Tanaka, and Nial Tanvir)

Understanding GRBs & SNe with TMT

• GRBs

— Universality of GRB-SN connection?

- Characterize environments (circumburst and galactic)
- SNe (Core Collapse and Type Ia)
 - Map local stellar population (progenitors and companions)
 - Characterize environments (circumburst and galactic)
 - Observe cooling phase of CCSNe shock breakout
 - Origin of Type Ia diversity
 - Fill z>1 with Type Ia and IIP

See also Xiaofeng Wang's talk for a more detailed discussion for low redshift use of GRBs and SNe

Probing the Early Universe

- First Stars (Pop III) and the Transition to Pop II
 - When did they occur and over what period of time?
 - What environment do they reside in?
- Massive Star Formation Rate at z > 6
- Environments of Massive Stars
 - What is the chemical abundance and how does it change?
 - How much dust and how does it change over time?
- Reionization
 - When did it begin and end?
 - Is it consistent with other (WMAP, quasars, etc.) results?
 - Is it patchy or smooth?

Observations can be done with IRIS

Identifying Pop III Stars in Galaxy Surveys

Using IRIS, could possibly detect out to z ~15 depending on true strength of signal. Depending on bluest band, might be able to use MICHI.

Using GRBs to Find the First Stars

- GRBs may be the only way to observe these distant objects directly
 - JWST won't know where to look
 - Probability of finding one by chance extremely low
- Caveat: unclear that Pop III stars explode as GRBs
 If not, we will still see some of the earliest stars (Pop II)

 GRB 090423 (z = 8.2)

GRBs are in the Early Universe

GRBs are Bright!

Ideal GRB Spectral Properties for Probing

Non-thermal, smoothly joint broken power-law spectrum

log(frequency)

GRBs are not powered by a hot gas in equilibrium, but are powered by accelerated relativistic electrons not in thermal equilibrium.

Determining Massive SFR with GRBs

- Most star formation at z>10 is in galaxies fainter than 1nJy
 - This is fainter that what the JWST can see
- GRBs select high-z galaxies independent of host galaxy luminosity

See also Ranga-Ram Chary's Talk

Determining Environments with GRBs

Afterglow spectroscopy with IRIS can provide z, HI column density of host, chemical abundances, dust, & info on intervening systems

ELT Simulated Afterglow Spectrum

z=8.2 simulated ELT afterglow spectrum

Little gas in host ⇒ good characterization of IGM.

Much gas in host ⇒ superb metallicity determinations.

Simulated GRB090423 spectrum taken by ELT rather than VLT (remember this was a faint afterglow!)

TMT Science Forum – Kyoto, Japan

Probing Reionization with GRBs

- Multiple GRB Sight Lines Addresses:
 - When reionization began
 - When it ended
 - Is it cnsistent with other sources?
 - If not, why?
 - Is it smooth or patchy?

Using IIn SNe to Find the First Stars

Using IIn SNe to Find the First Stars

Using IIn & SLSNe to Probe Environments

 Finding shock break outs at highz will aid in probing the progenitors Helped by time dilation

Is It a High-z GRB?

Tanvir et al. 2009

Current missions don't tell us anything about the redshift

Problem with No "A Priori" Redshifts

First few GRB alerts

100th GRB alert

You want to interrupt my telescope time?!?

Problem with No A Priori Redshifts

GRB 050904

Kann et al. 2007

GRB	t _{Photo-z}	t _{Spectra-z}	z
050904	10 hrs	3.5 dys	6.3
080913	10 hrs	11 hrs	6.7
090423	7 hrs	24 hrs	8.2

GRB 090423

Tanvir et al. 2009

30 min

Future GRB Missions During TMT?

TMT Observations of GRBs & SNe Crucial

- We must have GRB triggering capability, coupled with *a priori* redshift determinations, during the era of TMT!
- LSST will provide thousands of SNe per year. Sifting thru those that TMT should observe is currently a challenge.
 - We are developing the Supernova Analysis Application (SNAP) which will quickly type the SNe based on light curve and model comparisons
 - Future should include redshift estimation
 - http://snap.space.swri.edu

