Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets

Jun Takahashi (University of Hyogo) Taro Matsuo (Osaka University)

Polarimetry for planets

- Reflection makes polarization. Polarization of the reflected light from a planet has information of its atmosphere, clouds and surface.
- Polarimetry has been a powerful method to investigate Solar-System objects. For example, polarimetry for Venus (e.g., Lyot 1929) played a key role to identify H₂SO₄ hazes by determining the size and refractive index of the reflecting particles.
- As is for Solar-System planets, polarimetry for exoplanets may be a good diagnostic tool to know ...

atmospheric composition

- cloud/haze altitude (Stam 2004, 2008)
- optical thickness of atmosphere ? (Takahashi+ 2013)
- existence of a surface ocean ?? (McCullough 2006)

Pol. spectra of planets

Model calculations

- The enhanced features are explained by the decrease in intensity of the multiply scattered component at the absorption wavelengths as compared with that at the continuum wavelengths.
- Pol spectra are sensitive to the clouds/haze altitude.

Pol. spectra of planets

• Earthshine observations (Sterzik+ 2012, Miles-Paez+ 2014).

Enhanced features at molecular (H_2O , O_2) absorption wavelengths were confirmed by the observations.

Spectro-polarimetry seems to be a promising method to detect atmospheric molecules.

Benefits of polarimetry

Scientific points

 Polarization in planetary reflected light has information of its atmosphere, clouds and surface, which may not be obtained only by intensity observations.

Technical points

- State of polarization is (almost) not affected by telluric transmission.
 - ➡ H₂O and O₂ may be detected through spectro-polarimetry even on the ground.
- Polarimetric differential imaging (PDI) enhances contrast performance of an instrument and helps to detect planet signals.

Polarimeter for ELTs

• E-ELT

- A visible polarimetric imager EPICS-EPOL is being studied (Kasper+2010, Keller+ 2010).
- EPOL is designed $_{Gloup}have_{MP}$ detection $_{MP<300}^{Ex}$ contrast of a few 10^{-9} at 0^{M}_{362} arcsec. $_{147}^{M_{Earth}}$
- A spectro-polarimetry option is also studied (Rodenhuis+ 2012).
- TMT
 - No polarimeter has been proposed yet.

This study

- Motivation
 - Spectro-polarimetry for reflected light from an exoplanet may be used to detect atmospheric compositions such as H₂O and O₂.

• Aims

• We aim to evaluate the feasibility of the search for a spectropolarimetric feature of H_2O vapor using a high-contrast polarimetric instrument on a ground-based extremely large telescope (ELT).

• Methods

- Three types of errors are considered: (a) errors from different efficiencies between ordinary and extraordinary light beams, (b) errors caused by speckle noises, and (c) errors by photon noises from the leakage of the host star.
- We estimate the number of planets for which feasible spectropolarimetric observations will be possible.

Hypothetical instrument

• EPOL(spectro-polarimetry mode)-like observing system is assumed.

EPOL spectro-polarimetry experiment (Rodenhuis+ 2012)

Formulation of errors

• Degree of polarization

• Degree of
polarization:

$$P = \frac{F_0 - F_{90}}{F_0 + F_{90}}$$

$$F_0, F_{90}: \text{true flux of the planet (ordinary and extra-ordinary)}$$
• Measured flux:

$$\begin{pmatrix} f_0 \\ f_{90} \end{pmatrix} = \begin{pmatrix} r_0 F_0 \\ r_{90} F_{90} \end{pmatrix} + \begin{pmatrix} \epsilon_0 \\ \epsilon_{90} \end{pmatrix}$$

$$fiset error (speckle or photon noise)$$

$$r_{\chi} = \mathcal{I}_{\chi} \mathcal{I}_{\chi} k_{\chi}$$

$$f_{\chi} = \mathcal{I}_{\chi} \mathcal{I}_{\chi} k_{\chi}$$

$$f_{\chi} = \mathcal{I}_{\chi} \mathcal{I}_{\chi} k_{\chi}$$

$$fiset error (speckle or photon noise)$$

• Error terms:
$$\mathcal{E}_P = b_P^{\text{eff}} + \frac{(\epsilon_0 - \epsilon_{90}) - (P + b_P^{\text{eff}})(\epsilon_0 + \epsilon_{90})}{2\bar{r}\bar{F}}$$

Formulation of errors

$$\sigma_P \cong \pm \frac{1}{\sqrt{2\bar{r}\bar{F}^*}} \frac{\sqrt{C_{\rm raw}}}{C_{\rm p/s}}$$

star photon num.

Requirements

(a) Bias due to different efficiencies $b_{P}^{\text{eff}} = -\frac{1}{2} \left(\frac{r_{90}}{r_{0}} - 1 \right) (1 - P^{2})(1 + A\bar{f}) \longrightarrow |b_{P}^{\text{eff}}(\lambda_{\text{cnt}}) - b_{P}^{\text{eff}}(\lambda_{\text{abs}})| < w \cdot \Delta P$ (b) Bias due to speckles
(b) Bias due to speckles

$$[b_P^{\text{spec}}]_{\text{typ}} \cong \sqrt{g^2 + (P + b_P^{\text{eff}})^2} \frac{C_{\text{det}}}{C_{\text{p/s}}}$$

 $[b_P^{\text{spec}}(\lambda_{\text{abs}})]_{\text{typ}} < w \cdot \Delta P$

(c) Random error due to photon noise

$$\sigma_P \cong \pm \frac{1}{\sqrt{2\bar{r}\bar{F}^*}} \frac{\sqrt{C_{\rm raw}}}{C_{\rm p/s}} \qquad \blacksquare$$

$$\sigma_P(\lambda_{\rm abs}) < w \cdot \Delta P$$

Calculation

- Using the derived error equations, the error values in polarization degree are calculated for the 2041 known planets.
- We extract planets for which the pol. feature by water vapor ($\Delta P=10\%$ at $\lambda_{abs}=1.12 \ \mu m$) is detectable.
- Planet and star assumptions:

		Val.	unit	ref
Ρ(<i>λ</i> cnt)	pol deg at continuum	0.1		Miles-Paez+ 2014 (Earthshine x3)
ΔP	pol deg feature strength	0.1		Miles-Paez+ 2014 (Earthshine x3)
λ abs	absorption wavelength	1.12	μm	Miles-Paez+ 2014
Δλ	wavelength width of the	0.05	μm	Miles-Paez+ 2014
μ	absorption intensity depth	0.5		Turnbull+ 2005
$lpha_{ m p}$	phase angle	90	deg	
р	geometric albedo	0.25		Montanes-Rodriguez+ 2005
Гр	planet radius	var	km	Estimated from mass: Weiss et al. (2013) and Weiss & Marcy (2014)
m *	stellar apparent magnitude	var	mag	SIMBAD
d	distance of the system from Earth	var	рс	Exoplanet.eu or SIMBAD

Calculation

• Other setting

		Val.	unit	ref
T _{abs}	telluric transmittance at abs. wave.	0.7		GEMINI-S data
Δt	exp time	15	h	
D	telescope diameter	39	m	E-ELT
Craw	raw contrast	10-6 @0.1 "		EPICS
Cdet	detection contrast wo PDI	10 ⁻⁹ @0.1"		EPICS-IFS
kav	inst efficiency: (k ₀ + k ₉₀)/2	0.1		
Δk/kav	inst pol	0.05		
$\Delta T/T_{av}$	pol by telluric transmission	5x10 ⁻⁵		Bailey+ 2008
ΔI/I _{av}	inter-steller pol.	0.01		
W	detection definition	1/3		

Bias

Speckle errors limit the detectability. $C_{det} < C_{p2s} / 100 \text{ (g=1.0)}$ or $C_{det} < C_{p2s} / 10 \text{ (g=0.05)}$ is necessary.

Observable planets

Planet	m* (J mag)	d (pc)	Spect. type	Mass(M_Jup)	Est. R_p (km)	Est. type	flux (erg / s /cm^2)	a_p (AU)	In/Outside of snow line ?	θ_p (arcsec)	σ_Ρ	ΔΡ/σ_Ρ	Δb_P	ΔP/Δb_P	SL (AU)
55 Cnc f	4.6	12.3	K0IV-V	0.14	56460	E2	1.30E+06	0.78	I	0.063	0.019	5	0.012	9	2.21
61 Vir d	3.3	8.5	G5V	0.07	37607	E2	4.78E+06	0.48	I	0.056	0.01	10	0.015	7	2.44
Aldebaran b	-2.1	20.4	K5III	6.47	73097	E1	3.18E+08	1.46	I	0.071	0.002	62	0.015	7	3.45
GJ 682 c	6.5	5.1	M3.5V	0.03	22509	E3	8.60E+08	0.18	I	0.035	0.029	4	0.021	5	0.20
GI 785 b	4.1	8.9	K1V	0.05	32227	E2	3.91E+06	0.32	I	0.036	0.015	7	0.033	3	1.64
Gliese 876 b	5.9	4.7	M4 V	1.93	41457	E1	4.62E+05	0.21	1	0.044	0.007	15	0.005	19	0.30
Gliese 876 e	5.9	4.7	M4 V	0.04	29984	E2	1.80E+05	0.33	0	0.071	0.02	5	0.005	21	0.30
HD 113538 b	6.4	15.8	K9V	0.36	99429	E2	8.98E+04	1.24	0	0.078	0.029	3	0.005	21	0.92
HD 176051 b	3.9	15.0		1.50	84965	E1	8.60E+08	1.76	?	0.117	0.017	6	0.007	14	0.92
HD 192310 c	4.1	8.8	K3V	0.08	42025	E2	3.06E+05	1.18	1	0.134	0.032	3	0.009	11	1.73
HD 27442 b	2.6	18.1	K2 IV a	1.35	59975	E1	2.02E+07	1.16	I	0.064	0.014	7	0.022	5	3.89
HD 60532 c	3.7	25.7	F6IV-V	7.46	79813	E1	8.60E+08	1.58	I	0.061	0.026	4	0.028	4	5.60
HD 62509 b	-0.5	10.3	KOIIIb	2.90	57459	E1	1.76E+07	1.69	1	0.163	0.004	28	0.008	13	5.83
alf Ari b	0.1	20.2	K2III	1.80	66913	E1	7.31E+07	1.20	1	0.059	0.004	24	0.025	4	6.08
μ Ara d	4.2	15.3	G3IV-V	0.52	50881	E1	2.37E+06	0.92	l	0.060	0.028	4	0.025	4	3.15
Average	3.5	12.9		1.65	55653		2.01E+08	0.97		0.1	0.017	12	0.0	10	2.58

Red: detectable for g=1.0

- g= 0.05 (best) \rightarrow 15 planets (inside of snow lime: 12)
- $g=1.0 \text{ (worst)} \rightarrow 5 \text{ planets}$ (inside of snow line : 2)

Observable planets

• Exposure time = 15h

Contrast vs. seperation

• Gliese 876b (g=1.0)

 $m^* = 5.9 \text{ mag}, d = 4.7 \text{ pc}, R_p = 4.1\text{E}+04 \text{ km}$

Summary

- Spectro-polarimetry for reflected light from an exoplanet may allow ground-based observers to detect atmospheric compositions such as H₂O and O₂.
- We evaluated the feasibility of the search for a spectro-polarimetric feature of H_2O vapor ($\Delta P=10\%$) by considering (a) errors from different efficiencies between ordinary and extraordinary light beams, (b) errors caused by speckle noises, and (c) errors by photon noises from the leakage of the host star.
- We predict that several known planets including a mini-Neptune are observable in principle assuming an EPICS-IFS-like detection contrast before PDI.
- It is worth beginning to study for a future high-contrast spectropolarimeter for TMT.