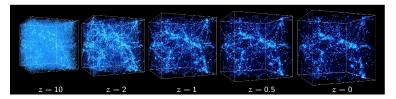
Mapping the z > 2 Cosmic Web with 3D Ly α Forest Tomography *TMT Science Forum 2016, Kyoto*

Khee-Gan (K.G.) Lee

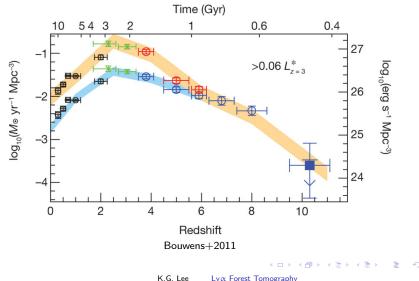

Hubble Fellow at LBNL (USA)

May 26, 2016

Collaborators: Martin White (UC Berkeley), David Schlegel (LBNL), Joe Hennawi (MPIA), R. Michael Rich (UCLA), Nao Suzuki (IPMU), Xavier Prochaska (UCSC), COSMOS collaboration

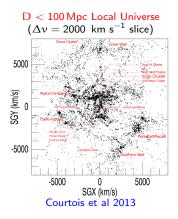
K.G. Lee Ly a Forest Tomography

The Cosmic Web and Cosmology


Credit: Anatoly Klypin (NMSU) & Andrei Kravtsov (Chicago)

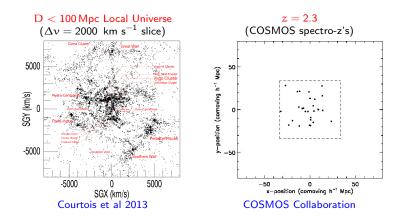
- Pattern of voids, filaments and nodes in the large-scale distribution of DM + baryons
- Caused by gravitational evolution of Gaussian random-phase initial conditions from inflation
- Detection of cosmic web in the 1980s was key evidence supporting inflationary cold dark matter paradigm
- Galaxy formation and evolution is influenced by cosmic web environment
- The evolution over time probes gravity models and the cosmological constant

K.G. Lee Ly & Forest Tomography


Why study cosmic web at 'Cosmic Noon'?

Peak of cosmic star-formation + AGN activity occured at $z \sim 2-3$

Lva Forest Tomography


Galaxy Redshifts at $z \sim 2$

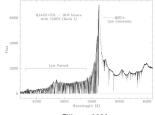
K.G. Lee Lyα Forest Tomography

< /□> < □>

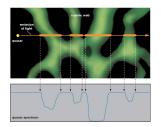
Galaxy Redshifts at $z \sim 2$

K.G. Lee Lyα Forest Tomography

・ロッ ・ 一 ・ ・ ・ ・

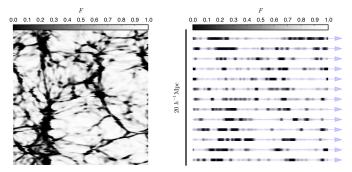

э

Lyman- α Forest as Probe of z > 2 Universe


- Seen in quasar spectra in their restframe λ < 121.6nm wavelengths
- Caused by neutral hydrogen in the IGM
- $\label{eq:linear} \begin{array}{l} \mbox{ Absorption is non-linear tracer of underlying } \\ \mbox{ LSS density in mildly overdense regime } \\ (\rho/\langle \rho \rangle \sim \mbox{ few}): \end{array}$

$$\tau(x) \propto \frac{T_0^{-0.7}}{\Gamma} \left(\frac{\rho(x)}{\langle \rho \rangle}\right)^{2-0.7(\gamma-1)} \label{eq:tau}$$

In this talk, I will ignore astrophysics! Absorption ↔ Cosmic Web Density



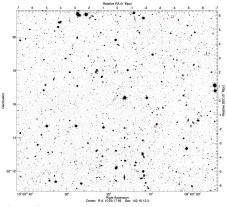
(4 同) (4 日) (4 日)

K.G. Lee Ly a Forest Tomography

Ly α Forest Tomography

If the quasars have arcmin (\sim Mpc) separations, can enable tomographic reconstruction full 3D absorption field (Pichon et al 2001, Caucci et al 2008, Lee et al 2014a)

Credit: Casey Stark (Berkeley)

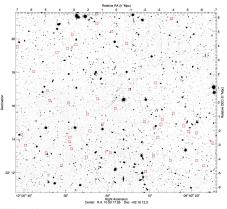

But quasars (rare!) aren't enough to pull this off. Need to also target faint (> 23rd mag) UV-bright star-forming galaxies!

K.G. Lee Ly & Forest Tomography

・ロト ・同ト ・ヨト ・ヨト

Availability of Background Sources

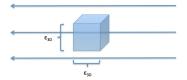
 $g \leqslant 22.5$ sources at 2.3 < z < 3.0


 $12' \times 10.8'$ Hubble ACS Image in COSMOS (Koekemoer+2007)

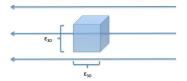
K.G. Lee Lyα Forest Tomography

(4 同) (4 日) (4 日)

Availability of Background Sources


 $g \leqslant 24.7$ sources at 2.3 < z < 3.0

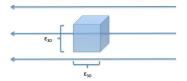
 $12' \times 10.8'$ Hubble ACS Image in COSMOS (Koekemoer+2007)


It is necesary to target faint background LBGs for tomography!

K.G. Lee Lyα Forest Tomography

Imagine chopping up $z\sim2.3$ survey volume into 'voxels' with similar size to desired map sampling, ε_{3D}

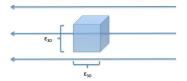
K.G. Lee Lyα Forest Tomography



Imagine chopping up $z\sim2.3$ survey volume into 'voxels' with similar size to desired map sampling, ε_{3D}

▶ In transverse plane, sightline separation $\langle d_{\perp} \rangle$ needs to be equivalent to ϵ_{3D} , so $\epsilon_{3D} \sim 3 h^{-1}$ Mpc $\leftrightarrow \langle d_{\perp} \rangle \sim 2.5'$: (g ≤ 24.5 LBGs + QSOs required!)

K.G. Lee Lyα Forest Tomography


イロト 不得 とうせい かほとう ほ

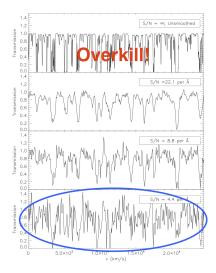
Imagine chopping up $z\sim2.3$ survey volume into 'voxels' with similar size to desired map sampling, ε_{3D}

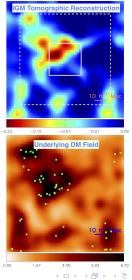
- ▶ In transverse plane, sightline separation $\langle d_{\perp} \rangle$ needs to be equivalent to ϵ_{3D} , so $\epsilon_{3D} \sim 3 h^{-1}$ Mpc $\leftrightarrow \langle d_{\perp} \rangle \sim 2.5'$: (g ≤ 24.5 LBGs + QSOs required!)
- Along LOS, $\epsilon_{3D} \sim 3 h^{-1}$ Mpc is $\Delta \lambda \sim 10 \text{ \AA}$

K.G. Lee Ly a Forest Tomography

Imagine chopping up $z\sim2.3$ survey volume into 'voxels' with similar size to desired map sampling, ε_{3D}

- ▶ In transverse plane, sightline separation $\langle d_{\perp} \rangle$ needs to be equivalent to ϵ_{3D} , so $\epsilon_{3D} \sim 3 h^{-1}$ Mpc $\leftrightarrow \langle d_{\perp} \rangle \sim 2.5'$: (g ≤ 24.5 LBGs + QSOs required!)
- Along LOS, $\epsilon_{3D} \sim 3 h^{-1}$ Mpc is $\Delta \lambda \sim 10 \text{ Å}$

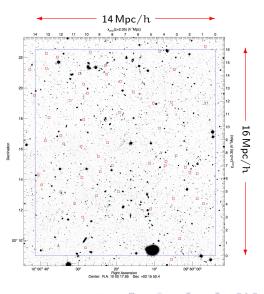

Moderate resolution spectra with modest S/N are sufficient for IGM tomography!


K.G. Lee Ly & Forest Tomography

< ロ > < 同 > < 回 > < 回 > < □ > <

Reconstructions with low-S/N Spectra

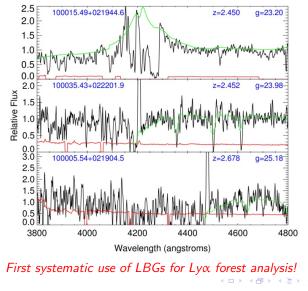
Simulated reconstructions from Lee+2014a on $L=100\,h^{-1}$ Mpc box



K.G. Lee

Ly α Forest Tomography

Pilot Tomography Survey in COSMOS


- Pilot observations in 2014-2015 on COSMOS field (Lee+2014b, Lee+2016)
- LRIS spectrograph on 10.3m Keck-I telescope, Hawai'i
- Total ~ 15 hrs on-sky, ~ 2hr exposures per pointing
- ► 49 galaxies+QSOs within blue area (11.8' × 13.5') $\rightarrow \sim 1100 \text{ deg}^{-2}$ (c.f. $\sim 15 \text{ deg}^{-2}$ in BOSS Ly α)

K.G. Lee

Lyα Forest Tomography

Example Spectra

K.G. Lee Ly a Forest Tomography

Tomographic Reconstruction

Measure Ly α forest transmission $\delta_F = F/\langle F \rangle - 1$ ('data'), pixel noise estimates σ_F , and [x, y, z] positions. Perform Wiener filtering on these inputs to estimate the map:

$$\mathbf{M} = \mathbf{C}_{\mathsf{M}\mathsf{D}} \cdot (\mathbf{C}_{\mathsf{D}\mathsf{D}} + \mathbf{N})^{-1} \cdot \mathbf{D}$$

The noise term provides some noise-weighting to the data. We assume Gaussian correlation function in the map, where $C_{DD} = C_{MD} = C(\mathbf{r}_1, \mathbf{r}_2)$, and

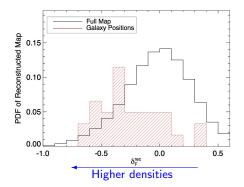
$$\mathbf{C}(\mathbf{r_1}, \mathbf{r_2}) = \sigma_F^2 \exp\left[-\frac{(\Delta r_{\parallel})^2}{2L_{\parallel}^2}\right] \exp\left[-\frac{(\Delta r_{\perp})^2}{2L_{\perp}^2}\right], \quad (1)$$

with $L_{\perp}=2.5h^{-1}$ Mpc and $L_{\parallel}=2.0\,h^{-1}$ Mpc, and $\sigma_F=0.8$ (Note average sightline separation $\langle d_{\perp}\rangle\approx2.5\,h^{-1}$ Mpc).

K.G. Lee Lyα Forest Tomography

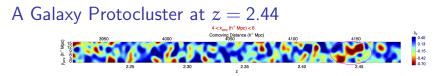
3D Map of Cosmic Web at 2.2 < z < 2.5

$\begin{array}{l} \mbox{260}\ h^{-1}\ \mbox{Mpc}\ \mbox{along}\ \mbox{LOS};\ 14\ h^{-1}\ \mbox{Mpc}\ \times\ 16\ h^{-1}\ \mbox{Mpc}\ \ transverse \rightarrow \\ V = 5.8 \times\ 10^4\ h^{-3}\ \mbox{Mpc}^3 \sim\ (39\ h^{-1}\ \ \mbox{Mpc})^3 \end{array}$

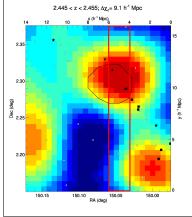


K.G. Lee Lyα Forest Tomography

(日)


Correlations with Foreground Galaxies?

There are some known galaxies with spectroscopic redshifts overlapping the map volume. We can compare locations of 31 MOSDEF galaxies with the overall map PDF:



Galaxies clearly live in high-density regions of our map!

K.G. Lee Ly a Forest Tomography

K G Lee

HETDEX Pilot LAEs (stars, Chiang+2015); LBGs (squares, Diener+2015); Open circles: sightline positions

- See one large (~ 20 h⁻¹ Mpc) overdensity in our absorption map (3σ significance)
- Correlated with z = 2.45 galaxy protocluster from LBGs and LAEs (Diener+2015, Chiang+2015)
- Comparison to sims gives descendant mass estimates:

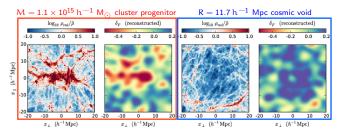
$$\label{eq:masses} \begin{split} \mathsf{M}(z=0) &= (3\pm1.5)\times10^{14}\,h^{-1}\,\,\text{Mpc}\\ (\sim\text{Virgo cluster}) \end{split}$$

 Elongated morphology suggests possible fragmentation into two z ~ 0 clusters

< 日 > < 同 > < 三 > < 三 >

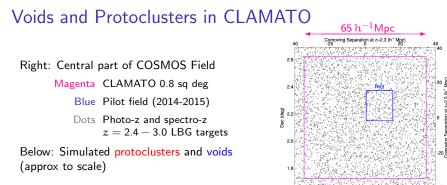
Lyα Forest Tomography

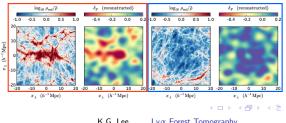
CLAMATO Survey


(COSMOS Lyman-Alpha Mapping And Tomography Observations)

- Co-Pls: Schlegel & White
- Upcoming LMAP proposal targeting ~ 1 sq deg of COSMOS field
- $\blacktriangleright\,$ Require \sim 240hrs on-sky with Keck-LRIS $\rightarrow \sim$ 30 nights over 3 years
- ► Target ~ 1000 LBGs at 2.3 $\leq z \leq$ 3 for R ~ 1000 spectroscopy $\rightarrow \langle z \rangle \sim 2.3$ LSS map over $10^6 h^{-3} Mpc^3 \sim (100 h^{-1} Mpc)^3$
- Similar spatial resolution (~ 3 h⁻¹ Mpc) and volume (~ 10⁶ h⁻³ Mpc³) to GAMA survey at z < 0.3!

K.G. Lee $Ly\alpha$ Forest Tomography


Voids and Protoclusters

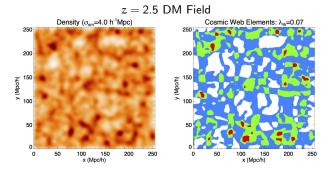


Casey Stark (UC Berkeley) studied detectability of $z \sim 2.5$ protoclusters and voids with Ly α forest tomography in sims (Stark+2015a, 2015b)

- ▶ $L = 256 h^{-1}$ Mpc TreePM sim with IGM absorption from FGPA
- Generated DM density field and mock tomographic maps with sightline sampling + noise consistent with real data
- ▶ Protoclusters: Look for 3σ peaks in smoothed map, which gives > 90% completeness and ~ 75% purity for $M>3\times10^{14}\,h^{-1}$ M_{\odot} progenitors
- ▶ Voids: Search for spherical low-density regions in DM field and tomographic map $\rightarrow \sim 65\%$ volume overlap for $\sim 15\%$ filling factor

・ 同 ト ・ ヨ ト ・ ヨ ト

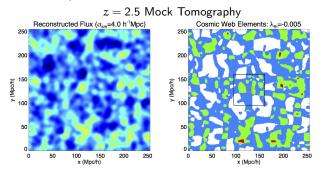
Lva Forest Tomography


150.6

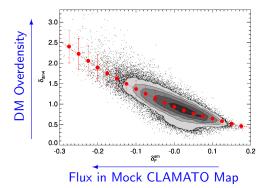
150.4

150 f RA (deg)

Sheets and Filaments in $z \sim 2.5$ Cosmic Web (Lee & White 2016)

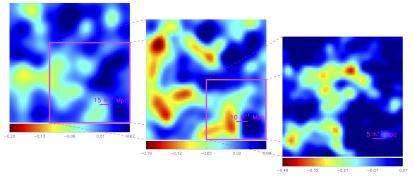

Analyze eigenvalues of gravitational deformation tensor $T_{ij} \equiv \partial^2 \Phi / \partial x_i \partial x_j$ (e.g. Forero-Romero+2009) to identify sheets, filaments and nodes in cosmic web:

- Excellent recovery of sheets and filaments: ~ 60 70% volume overlaps between DM and tomographic map (Comparable to GAMA galaxy cosmic web recovery at z ~ 0.2!)
- Significant contiguous sky area required, motivates 1deg² CLAMATO


Sheets and Filaments in $z \sim 2.5$ Cosmic Web (Lee & White 2016)

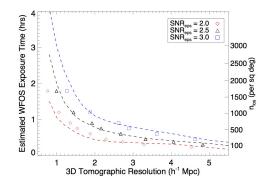
Analyze eigenvalues of gravitational deformation tensor $T_{ij} \equiv \partial^2 \Phi / \partial x_i \partial x_j$ (e.g. Forero-Romero+2009) to identify sheets, filaments and nodes in cosmic web:

- Excellent recovery of sheets and filaments: ~ 60 70% volume overlaps between DM and tomographic map (Comparable to GAMA galaxy cosmic web recovery at z ~ 0.2!)
- Significant contiguous sky area required, motivates 1deg² CLAMATO


Flux-Mass Relationship on $4 h^{-1}$ Mpc Scales

K.G. Lee Ly Forest Tomography

IGM Tomography and TMT


30m aperture will allow much fainter sources \rightarrow higher sightline densities \rightarrow better spatial resolution

Lee+ 2014

K.G. Lee Ly & Forest Tomography

An 'ETC' for IGM Tomography

- 2-3hr integrations on TMT/WFOS will allow IGM tomography to scales of ~ 1 h⁻¹ Mpc (300-400 pkpc)
- Target densities of $\sim 1 \operatorname{arcmin}^{-2}$ (approx. WFOS slit density)
- WFOS will be powerful but require many pointings to cover interesting volumes → 2nd generation wide-field MOS on TMT would be great!

K.G. Lee Ly & Forest Tomography

Conclusion

- Observations of $z \sim 2-3$ QSOs + LBGs at high area densities allow 3D reconstructions of foreground Ly α forest absorption
- Ideal for detecting extended $z \sim 2$ structures: voids + protoclusters
- ▶ Good recovery of z ~ 2 cosmic web sheets and filaments comparable to z ~ 0.1 galaxy surveys!
- ▶ IGM Tomography already works! CLAMATO Survey on Keck-I/LRIS (2016-2019) to map $\sim 10^6\,h^{-3}\,\text{Mpc}^3$ probing scales of $\sim 3\,h^{-1}\,\text{Mpc}$
- Similar program TMT/WFOS will allow tomographic mapping down to scales of ~ 1 h⁻¹ Mpc or 300-400 pkpc → synergy with individual halo CGM scales!
- ► A lot of theory work needed to interpret and exploit observations!