Prospects for Imaging the IGM/CGM with TMT

LANDAVAY

Christopher Martin California Institute of Technology For CWI, KCWI, FIREBALL, ISTOS Teams I. Why/How to Image CGM/IGM? Cosmic Web Imager: PCWI/KCWI Data from PCWI and Science from KCW 4. ATMT CWI?

I.Why Map IGM/CGM Emission?

2. Most baryons in IGM, Some in warm IGM 5. Star forming galaxies are ejecting gas & chemicals into Cosmic Web

IGM Project: I. Goals Imaging & Mapping the Hidden Cosmic Web of Baryons

A. Decode Lyα Emission & UV Line Diagnostics

C. Discover & Map IGM Baryons, Correlate with Cosmic Web & Galaxies

B. Discover/Map CGM Baryons, Coevolution with Galaxies

D. Cosmological Applications of CGM/IGM Emission Mapping

PCWI : Image Slicer

Observational Strategies Enabled by 2D Imaging Spectroscopy of Rest UV IGM/CGM Emission

I) Direct Detection

UV IGM Emission \rightarrow Baryon Census (Where?)

 $1 \text{ LU} = 1 \text{ ph cm}^2 \text{ s}^1 \text{ sr}^1 = 10^{-22} \text{ erg cm}^2 \text{ s}^1 \text{ arcsec}^2 (\text{at 5000Å})$

IGM Project

Imaging & Mapping the Hidden Cosmic Web of Baryons

ISTOS Explorer 1250-2800Å 0.05<z_{Lya}<1.2

Goals (rough chronological order)

(1) Discover & map Circum-Galactic Medium (CGM) & IGM-galaxy co-evolution
(2) Discover & map IGM emission from the hidden baryons (WHIM, cosmic web)
(3) Use IGM emission to trace large scale structure & cosmology
(4) Detect & map emission from growing reionization HII regions

II. Cosmic Web Imager

Palomar CWI and Keck CWI

PCWI Palomar Cosmic Web Imager

Chris Martin, Anna Moore, Matt Matteuzski, Patrick Morrissey, Daphne Chang, Shahin Rahman 3D, Low Surface Brightness Spectroscopy at Palomar

Science Applications (examples)

- (1) Map circum-galactic medium 2 < z < 7
- 2 Map circum-QSO medium
- ③ Composition & age of stellar remnants (halos, intracluster light)
- (4) Low mass/surface brightn. universe
- 5 Galaxy kinematics & stellar pops
- 6 GRB/SNe host properties
- ⑦ Galactic superwinds/feedback

Design

- ✓ Integral Field Spectrograph: 60 x 40 arcsec²
- ✓ R~5000 spectrograph
- ✓ 1 channel, 0.38-0.95 µm coverage w/ multiple gratings
- Designed for low surface brightness emission
- ✓ Designed for precision sky subtraction
- ✓ First light 2009

KCWI Keck Cosmic Web Imager

3D, Low Surface Brightness Spectroscopy at Keck

Key Features

- Wide spectral range (3500-10500Å)
- Flexible field of view, image resolution
- Flexible spectral resolution, coverage
- Superb sky subtraction
- Excellent imaging & Dark Sky on Mauna Kea
- 1st Light Feb 2015 (KCWI-Blue)

Science Applications (examples)

- Map circum-galactic medium 2<z<7
- Map circum-QSO medium
 - Map z~6 reionization bubbles
 - Composition & age of stellar remnants
 - Unusual stellar nebulae
 - Low mass galaxies
- Galaxyoutskirts
- Galaxy kinematics & stellar age, composition
- Galaxy gas halos, fountains
- Stong lens systems
- Transient sky -- Explosions
- Galactic superwinds/feedback
- Exoplanet transit spectroscopy

KCWI Flexible & Powerful 2D Spectroscopy

3 selectable image slicers!

Strengths

- Blue coverage (3500-6000Å)
- Red coverage (5600-10500Å)
- Precision Sky Subtraction
- Flexible observing modes
- High Resolution (R~20,000)

Slicer	Field of View	Spatial Resolution	Spectral Resolution
Small	20" x 8"	0.6" x 0.35"	0.23Å (R 20,000)
Medium	20" x 16"	0.6" x 0.7"	0.45Å (R 10,000)
Large	20" x 32"	0.6" x 1.4"	0.90 Å (R 5,000)

KCWI IFU Formats

KCWI-blue Commissioning

KCWI-blue Commissioning

-

.

6

End-to-end, with UCSC camera and KCWI CCD

Spatial shift of spectra is due to a residual grating misalignment

TO

Airglow

Bernstein, Freedman, Madore 2002

Sensitivity

Effect of Sky Subtraction Accuracy

see Sembach and Tonry 1996

Nod-and-Shuffle Sky Subtraction

Source

Sky

Source-Sky

III. Science from Cosmic Web Imager

Science Topics for KCWI and Examples from PCWI Data

	(1) Young Stars	(2) Nebulae	(3) Light Echos	(4) ISM
			$\frac{1}{\frac{1}{2}}$	
Slicer	SMALL	LARGE	LARGE	LARGE
Resolution	HIGH	MEDIUM	LOW	HIGH
Sky Subtraction	NO	YES	YES	YES
Polarization	YES	YES	YES	YES

	(5) * Clusters	(6) Galaxy Gas	(7) LSB Galaxies	(8) Gas Halos
		4HβVelocityDispersion Map2050σ_v [km/s]	the second secon	
Slicer	SMALL	LARGE	SMALL	LARGE
Resolution	HIGH	MEDIUM	HIGH	MEDIUM
Sky Subtraction	NO	YES	YES	YES
Polarization	NO	NO	NO	NO

	(9) Ellipticals	(10) Stellar Halos	(11) dZ/dr	(12) Galaxy Assy
	NGC 474 Credit & Copyright: PA. Duc (CEA, CFHT)		<pre> final state st</pre>	$-20 -10$ $\frac{\text{kpc}}{\text{b}}$ 10 20 0 $\frac{20}{10}$ \frac
Slicer	SMALL	MEDIUM	MEDIUM	LARGE
Resolution	HIGH	MEDIUM	LOW	MEDIUM
Sky Subtraction	NO	YES	YES	YES
Polarization	NO	NO	YES	NO

	(13) AGN/Galaxy (14) Circum Coevolution QSO Medium		(15) Circum Galactic Medium	(16) Lyα blobs
	[OIII]5007 / H _β		Image: state	
Slicer	SMALL	MEDIUM	MEDIUM	SMALL
Resolution	MEDIUM	MEDIUM	MEDIUM	MEDIUM
Sky Subtraction	NO	YES	YES	YES
Polarization	NO	YES	YES	YES

	(17) Cosmic Web	(18) Reionization	(19) Transient Universe	(20) Exoplanet Transit Spectra
		HII USO Observer USO USO USO USO USO USO USO USO		
Slicer	MEDIUM	MEDIUM	MEDIUM	LARGE
Resolution	MEDIUM	MEDIUM	LOW	HIGH
Sky Subtraction	YES	YES	NO	NO
Polarization	YES	NO	NO	NO

(14) Circum-QSO Medium

UM287: Cosmic Web Filament?

Lya Narrow Band (z=2.28)

Continuum

Cantalupo et al. 2014 Nature

40Å around systemic velocity

Special spatially variable narrowband filter of data cube

Martin+2015, Nature, 524, 192

20

10

LETTER

A giant protogalactic disk linked to the cosmic web

D. Christopher Martin¹, Mateusz Matuszewski¹, Patrick Morrissey¹, James D. Neill¹, Anna Moore², Sebastiano Cantalupo³, J. Xavier Prochaska^{4,5} & Daphne Chang[‡]

The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'-relatively cool (temperatures of the order of 10⁴ kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos¹⁻³—are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections^{4,5}. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging⁶. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that

Martin+15

#I:UM287 PGD

- $M_h = 11 \times 10^{12} M_{\odot}$
- $M_d = 1.6 \times 10^{11} M_{\odot}$
- $M_d/M_h = 0.015$
- c = 3.2
- D(max) = 130 kpc
- R(vir) = 216 kpc

Chi²

10

- z=2.28
- t(orb) = 0.9 Gyr

Velocity (Model)

- t(vir) = 2.8 Gyr
- t(age) = 2.8 Gyr
- λ_b=0.14

Martin+2015, Nature, 524, 192

Protogalactic Disk: Baryon / Dark Matter Profile

Filament Model

#2: HSI549+19 PGD

150 kpc

- $M_{\rm h} = 4 \times 10^{12} M_{\odot}$
- $M_d = 9 \times 10^{10} M_{\odot}$
- $M_d/M_h = 0.024$
- c = 3.1
- D(max) = 200 kpc
- R(vir) = 125 kpc

- z=2.84
- t(orb) = 2.0 Gyr
- t(vir) = 1.6 Gyr
- t(age) = 2.2 Gyr
- λ_b=0.34

Martin et al. 2016 ApJLett (in press)

CGM Emission \rightarrow How does gas get into galaxies? Cold Filament Accretion \rightarrow Large Angular Momentum \rightarrow Giant Rotating Disks/Rings of Gas

Velocity Profile

Cold Gas Profile

Pichon+11; Ceverino+10, Danovich+12,14

Cold Flow Inspiral

Surface Density/Flow

Azimuthal Velocity

Radial Velocity

Dekel 2016

Cold Flow Inspiral

Simulation

QSO 1549+19

Lya Proto-Galactic Disks (PGDs)

Disk	Z	R _{max} [kpc]	Log M _h	C	λ_{b}	T _{orb} [Gyr]	T _{vir} [Gyr]	σ _v [km/s]	#Fila- ments
UM287	2.28	65	13.0	3.2	0.14	0.9	2.8	53	1+
Q1549	2.84	110	12.6	3.1	0.30	2.0	1.6	44	2+
Q1009	2.65	45	12.7	1.7	0.24	0.8	2.4	54	1
Q1700	2.74	65	12.3	1.1	0.39	2.1	1.5	52	2?

QSO Giant Lyα Nebulae

Borosova+2016

Lya Emission Near QSO Q

Lya Emission Near QSO Q

INFLOW?

OUTFLOW?

∆y [arcsec]

(17) Ly α emission from IGM Cosmic Web

	Grating Dispersion (R)					
Slicer	Low	Medium	High			
Large		2000				
Medium		4000				
Small						

(17) IGM/CGM Emission & Kinematics z~3 Lyman α blob

IGM/CGM Emission Models Spectral Image Plots

500 pKpc Cantalupo+06

(17) CGM Emission & Kinematics z~3 Lyman α blob

Spectral Image

IV. A TATA Cosmic Neb Imager

TCWI exploits KCWI design and PCWI/KCWI science foundation to perform unique breakthrough science

A TCWI Concept

4 x KCWI

ROM COST: \$10M NRE + 4 x \$10M = \$50M Like IRMOS, major design heritage from KCWI-B/R

KCWI \rightarrow **TCWI** Nod & Shuffle \rightarrow Photon-counting CCDs

TCWI IFU Formats: WIDE

21"

TCWI IFU Formats: SUPER WIDE

TCWI IFU Formats: MIXED

13"

PCWI, KCWI, TCWI Comparison

	PCWI	KCWI	TCWI
# pixels	24 x 33 = 800	24 x 33 = 800	48 x 22 = 1100
R	1000-5000	900-20,000	500-20,000
IFU formats	WIDE	FINE, MED, WIDE	FINE, MED, WIDE, SUPER WIDE
Band Δλ	4000-9500Å	3500-10500Å	3000-10500[- 18000Å]
Precision Sky Subtraction	Nod & Shuffle 1/3 bandwidth	Nod & Shuffle 1/3 bandwidth	Nod and Count 3/3 bandwidth Ph counting
Photon-counting spectroscopy	NO	NO	YES
SUPER WIDE IFU	NO	NO	YES
Sky	BRIGHT	DARK	DARK

PCWI, KCWI, TCWI Comparison

	PCWI	KCWI	TCWI
GRASP = FOV * Area * Δz (arcsec ⁻² cm ²)	400	1000	40,000
MDF (point) [1 hr]	21.2	23.6	25.3
MDF (bucket) [1 hr]	1500 LU/Å	550 LU/Å	160 LU/Å
MDF (point) [8 hrs]	22.4	24.6	26.8
MDF (bucket) [8 hrs]	600 LU/Å	200 LU/Å	60 LU/Å
MDF (point) [40 hrs]	23.6	26.6	27.7
MDF (bucket) [40 hrs]	200 LU/Å	80 LU/Å	30 LU/Å
Structure	CGM/CQM Elliptical galaxy central	IGM bright ETG outer zones	IGM faint Stellar streams

CGM Sensitivity

CGM Sensitivity

IGM Sensitivity

What TCWI May do that PCWI and KCWI Can't

Tidal Stellar Streams

Faint Cosmic Web Emission

Deconstructing Sources/ Geometry/Detailed Structure

TCWI – Next Steps

- Now: Expressions of interest from TMT community
- Late 2016/Early 2017: Organize science and technical workshop in late 2016
 - 1st results from KCWI-B available
 - Identify possible international instrument partners and science team members
 - Develop preliminary concept for proposal to TMT 2nd Generation Concept Study call
- Submit concept study proposal
- A possible TCWI would build on KCWI design/development and PCWI/KCWI science foundation to perform unique breakthrough science

KCWI Uniqueness

wrt Competing Integral Field Spectrographs

Unique Feature	Science applications	Design Impacts
Flexibility/versa tility	ALL	3 slicers Selectable gratings 2 channels.
High spectral resolution	Elliptical galaxies, CGM/IGM	Narrow slit limited imaging performance
High efficiency	Halos, streams, light echoes, CGM, IGM, reionization	High Performance Coatings Operations S/W DRP Simple enclosure
Blue coverage	Halos, z=2-3 CGM and IGM Nearby galaxies.	2 channels, optimized blue CCD, optics
Red coverage	Reionization, z>6-7 universe z<0.5 universe	2 channels, FDCCD, red optimized optics
Precision Sky Subtraction (Nod & Shuffle)	CGM/IGM Galaxy outer limits Stellar streams	Deployable nod & shuffle mask. 4k x 4k CCDs. Control S/W, guider.

IGM/CGM Lyman α Emission Profile Physical Diagnostics $\rightarrow N_{HI}$, σ , Δv

 $w = f(N_{HI}, \sigma, \Delta v)$

 $p = g(N_{HI}) = \Delta \lambda / w$ $t = h(\Delta v) = \frac{I_{+} - I_{-}}{I_{+} + I_{-}}$

Protogalactic Disk (PGD): Model

Martin+2015, Nature, 524, 192

Protogalactic Disk: Rotation Curve

Prospects for Imaging the IGM/CGM with TMT

- IGM and CGM Emission → New probe of cosmic structure and galaxy formation
- PCWI detecting emission and obtaining completely new kind of data and physical insight
- KCWI will be a powerful, flexible instrument with superb sky-subtraction precision and low surface brightness sensitivity
- A possible TCWI would build on KCWI design/development and PCWI/KCWI science foundation to perform unique breakthrough science