Unraveling the Nature of Dust Production from Wolf-Rayet Binaries

Ryan M. Lau (Caltech/JPL)

Collaborators: Matt Hankins (Cornell), Terry Herter (Cornell), Rainer Schodel (CSIC-IAA), Mark Morris (UCLA), Olivia Jones (STScI), Mike Ressler (JPL)

TMT Science Forum Kyoto, Japan May 26th , 2016

Forming Dust in WR Binaries

Image by Gemini Observatory

Dusty Outflow & Orbital Motion Forms a "Pinwheel"

Dusty WR "Pinwheel" Nebulae!

Revisiting an important question– What is the WR Binary Contribution to Galactic Dust Budget?

According to dust production studies in 1998... (Dwek 1998)

	This Work		Jones & Tielens 1994	
STELLAR SOURCE	Carbon	Silicate	Carbon	Silicate
Quiescent mass loss				
C-rich stars O-rich stars Wolf-Rayet stars	2.8 0.02	 3.7 	2.1 0.06	3.2
Explosive mass loss				
Novae Type II SNe Type Ia SNe	3×10^{-3} 1.5 0.09	$<3 \times 10^{-3}$ 7.0 3.5	0.3 2 0.3	0.03 12 2

Dust Production Rates in the Solar Neighborhood at $t = t_G^{a}$

Dust contribution from WR stars thought be insignificant... almost ~100x less than SNe

However, there are two important things to point out...

- 1. There are only ~40 known galactic dusty WR system (Rosslowe & Crowther 2015)
 - Dust formation/survival properties highly uncertain
- 2. Recent observational studies revealed that >70% of massive stars exist in close binaries (Sana et al. 2012)
 - Implies that a majority of massive stars may evolve through a dust-producing WR phase

Unraveling the nature of dust formation/survival with the TMT

- Multi-epoch, resolved near to mid-IR imaging from IRIS and MICHI will reveal...
 - Detailed morphology of the dust formation regions
 - How far "downstream" from the wind collision region does dust condense?
 - Dust temperature and density profile along the "pinwheel"
 - Mass loss history and evolution of cooler (mid-IR emitting) dust mass

 $\stackrel{\leftrightarrow}{\Rightarrow}_{\stackrel{\leftrightarrow}{\Rightarrow}}$

WR104 from different observatories

Current and Future Work

- SOFIA Mid to Far-IR photometry of dusty WR stars in the Galactic center (Hankins et al., Submitted)
 - A lot more mass in dust than other known dusty WR systems (by factor of ~10)!
- Near Future: JWST/MIRI mid-IR IFU observations of extended dusty WR systems
 - Chemistry and dust processing from ISM interaction

Thanks!

