TMT Capabilities and Instrumentation for Cluster Cosmology

TMT Science Forum 2016 May 26, 2016

Based on Cluster Cosmology Key Program Proposal

(with contributions from Marusa Bradac, Marie Lemoine-Busserole, Michael Pierce, Tommaso Treu, Gillian Wilson)

What cluster cosmology?

Dark energy!

- -N(m,z)
- Strong lensing tomography
- Arcs
- Weak lensing?

Dark Matter

- Subclustering
- galaxy halos
- interaction cross sections

Galaxy evolution

- galaxy mass assembly
- Downsizing
- high z star formation (talks by M. Pierce and M. Lemoine-Busserole in high-z section)

What can TMT contribute

- Not a cluster discovery machine!
 LSST, EUCLID, WFIRST, eROSITA, SPT, CMB-S4 will find them.
- "Unique" capabilities:
- 1) Angular resolution— ~5x HST: more arcs and more detail in arcs.
- 2) (multi)IFU resolved kinematics of galaxies in and behind clusters
- 3) AO-assisted spectroscopy: NIR redshifts of fainter objects
- 4) Wide field spectroscopy—more redshifts for cluster kinematics

Why clusters?

Strong lensing region for a massive cluster is <200 kpc across 23" at z=1.5, 24.5" at z=1, 32.4" at z=0.5, 60" at z=0.2. Very well-matched to FOV of IRIS/IRMS.

Weak lensing detections to ~2Mpc. WFOS covers entire region of WL interest in one pointing down to z<0.2.

Cluster Mass function evolution

Optical,NIR,X-ray,SZ will detect 10,000-50,000 clusters for evolution measurements. But for DE measure, mass scale must be known to $^{\sim}1\%$ over 0.1<z<1.5.

TMT contribution pivotal

Requires – IRIS imaging (to calibrate mass via strong lensing; and IRMS spectra to verify P(z) for background galaxies.

Can be done with first light instruments.

WtG; von der Linden et al. 2014, Applegate et al. 2014

Weak Lensing?

Going faint with good resolution can be a gigantic gain

Outside SL region, galaxy intrinsic ellipticity dominates. S/N scales as $N^{\frac{1}{2}}$

Competitive WL measures (at z>0.5) require a FOV of > 10 square arcminutes.

Within reach of Next generation WIRC?

Cook et al. 2014

Galaxy infall regions with WFOS

Capability exists already.

Now applicable to z~0.3 Limited by number of galaxies.

Rines et al. 2012

WFOS to $z^0.8$ IRMS to z>1.5

Strong (and weak) lensing tomography

$$\beta = \frac{D_{ls1}D_{ls2}}{D_{s1}D_{ls2}}$$

Requires High resolution imaging and redshifts for the sources. IRIS and IRMS to the rescue.

Independent Probe of Expansion History

Arc Statistics

Frontier field clusters have >100 multiply imaged galaxies.

Many arcs are still unresolved perpendicular to the arc.

Each multiply-lensed region within an image is its own constraint!

TMT can increase lens mapping spatial resolution by 5-10x over the frontier fields

Frontier Fields

Cluster Mass Modeling

Mass mapping resolution scales as N_{arcs} (not uniform). Even frontier field models disagree

Frontier Fields submitted lens models

Abell 2744 magnification maps for a lensed source at z = 9

Assume light traces mass

to different degrees

No such assumption

broader range of models

Mass substructure

DM substructure probes clustering evolution—increasing source density increases resolution as $N^{1/2}$. Can (and Mass sensitivity as N). IRIS will beat ACS by a factor of 2-3 in mass sensitivity with WL, and a similar factor for SL.

McCleary et al 2015

Exotics...

Lensed Supernovae, QSOs (GRBs?)

LSST (and Euclid, WFIRST) will find them.

TMT will extract cosmology from them...

DM interaction cross section?

Sensitivity depends on DM positional accuracy.

This again depends on Narcs and Ngalaxies.

Contribution to DM physics?

Massey et al. 2016

Rotation vs. Shear—WL

revisited!

De Burgh-Day et al. 2016 Blain 2002, Morales 2006

Shape Noise 0.01-0.02 vs. 0.35 -- Need 1000x fewer sources for the same S/N

Will require IRMOS

