Finding bio-signatures on extrasolar planets, how close are we?

Enric Palle

Instituto de Astrofisica de Canarias

TMT Forum 2017, Mysore

Exoplanet discoveries

Neptune

KOI-408.05

KOI-488.02

KOI-290.02

Earth

KOI-205.02 Mercury

PLANET SIZE (relative to Earth)

Exoplanets: What have we learned so far?

- 20-30% solar-type stars with planets
 - At least 1 planet per star
 - Multiple (rocky) planetary systems are common
 - Specially true for M-type stars, with a very large fraction of planetary occurrence rates
 - Planets are everywhere

From detection to ...

Atmospheric characterization

Transit spectroscopy: first detections of planetary atmospehres

Phase Curves: reflected light from the planet leading to albedo and temperature

Circulation, Crude Mapping

The planet moves at different velocity than the star

CO in dayside spectra of hot Jupiters

CO in dayside spectrum of tau Bootis b (CRIRES@VLT)

(Brogi et al. Nature 2012 - see also Rodler et al. 2012)

One in 1,000-10,000 photons cross the planetary atmosphere

One in 100,000-1,000,000 photons cross the planetary atmosphere

Focus of searches: brightest and closest stars

PLATO - 2025

Anglada-Escudé et al. (2015)

Earth

(artistic representation)

TRAPPIST-1 System

But these are not the only ones....

Artistic Concept

Planets and orbits to scale

Kepler-62 System

Distance is between brackets. Planet candidates indicated with asterisks.

CREDIT: PHL @ UPR Arecibo (phl.upr.edu) February 23, 2017

0.26

1.1

182

12.4

39

0.58

1.3

M-Warm Terran

012. TRAPPIST-1 g

Potentially Habitab

R

Dis

.....

oten	cially I	labitat	Name	Туре	Mass (ME)	Radius (RE)	Flux (S _E)	T _{eq} (K)	Period (days)	Distance (ly)	ESI
anked by I	Distance fro	001. TRAPPIST-1 d	M-Warm Subterran	0.4	0.8	1.15	264	4.0	39	0.90	
			002. GJ 3323 b (N)	M-Warm Terran	≥ 2.0	0.9 - 1.3 - 1.6	1.21	264	5.4	-	0.89
			003. Kepler-438 b	M-Warm Terran	4.0 - 1.3 - 0.6	1.1	1.38	276	35.2	473	0.88
			004. GJ 273 b (N)	M-Warm Terran	≥ 2.9	1.0 - 1.4 - 1.8	1.22	267	18.6	12	0.86
			005. Kepler-296 e	M-Warm Terran	12.5 - 3.3 - 1.4	1.5	1.22	267	34.1	737	0.85
		6122	006. Kepler-62 e	K-Warm Superterran	18.7 - 4.5 - 1.9	1.6	1.10	261	122.4	1200	0.83
2	Patrick and the second	- And	007. Kepler-452 b	G-Warm Superterran	19.8 - 4.7 - 1 <mark>.</mark> 9	1.6	1.11	261	384.8	1402	0.83
	A STATE		008. K2-72 e	M-Warm Terran	9.8 - 2.7 - 1.2	1.4	1.46	280	24.2	181	0.82
A Star Star			009. GJ 832 c	M-Warm Superterran	≥ 5.4	1.2 - 1.7 - 2.2	1.00	253	35.7	16	0.81
10 m		the second	010. K2-3 d	M-Warm Terran	11.1	1.5	1.46	280	44.6	137	0.80
			011. Kepler-1544 b	K-Warm Superterran	31.7 - 6.6 - 2.6	1.8	0.90	248	168.8	1138	0.80
[4.Z ly]	[13 ly]	[ZZ ly]	012. Kepler-283 c	K-Warm Superterran	35.3 - 7.0 - 2.8	1.8	0.90	248	92.7	1741	0.79
roxima Ĉen b	Kapteyn b*	GJ 667 C c	013. tau Cet e*	G-Warm Terran	≥ 4.3	1.1 - 1.6 - 2.0	1.51	282	168.1	12	0.78
			014. Kepler-1410 b	K-Warm Superterran	31.7 - 6.6 - 2.6	1.8	1.34	274	60.9	1196	0.78
			015. GJ 180 c*	M-Warm Superterran	≥ 6.4	1.3 - 1.8 - 2.3	0.79	239	24.3	38	0.77
			016. Kepler-1638 b	G-Warm Superterran	42.7 - 7.9 - 3.1	1.9	1.39	276	259.3	2866	0.76
			017. Kepler-440 b	K-Warm Superterran	41.2 - 7.7 - 3.1	1.9	1.43	273	101.1	851	0.75
			018. GJ 180 b*	M-Warm Superterran	≥ 8.3	1.3 - 1.9 - 2.4	1.23	268	17.4	38	0.75
			019. Kepler-705 b	M-Warm Superterran	? - 12.7 - 4.8	2.1	0.83	243	56.1	818	0.74
			020. HD 40307 g*	K-Warm Superterran	≥ 7.1	1.3 - 1.8 - 2.3	0.68	227	197.8	42	0.74
			021. GJ 163 c	M-Warm Superterran	≥ 7.3	1.3 - 1.8 - 2.4	0.66	230	25.6	49	0.73
[30 Iv]	[39 Iv]	[561 lv]	022. Kepler-61 b	K-Warm Superterran	? - 13.8 - 5.2	2.2	1.27	267	59.9	1063	0.73
			023. K2-18 b	M-Warm Superterran	? - 16.5 - 6.0	2.2	0.92	250	32.9	111	0.73
RAPPIST-1 †	TRAPPIST-1 g	Kepler-186 f	024. Kepler-1606 b	G-Warm Superterran	? - 11.9 - 4.5	2.1	1.41	277	196.4	2869	0.73
			025. Kepler-1090 b	G-Warm Superterran	? - 16.8 - 6.1	2.3	1.20	267	198.7	2289	0.72
			026. Kepler-443 b	K-Warm Superterran	? - 19.5 - 7.0	2.3	0.89	247	177.7	2540	0.71
tistic representations. Earth, Mars, Jupiter, and Neptun <u>e for scale.</u>			027. Kepler-22 b	G-Warm Superterran	? - 20.4 - 7.2	2.4	1.11	261	289.9	619	0.71
tance is between brackets. Planet candidates indicated with asterisks.			028. GJ 422 b*	M-Warm Superterran	≥ 9.9	1.4 - 2.0 - 2.6	0.68	231	26.2	41	0.71
			029. K2-9 b	M-Warm Superterran	? - 16.8 - 6.1	2.2	1.38	276	18.4	359	0.71
			030. Kepler-1552 b	K-Warm Superterran	? - 25.2 - 8.7	2.5	1.11	261	184.8	2015	0.70
			031. GJ 3293 c*	M-Warm Superterran	≥ 8.6	1.4 - 1.9 - 2.5	0.60	223	48.1	59	0.70
			032. Kepler-1540 b	K-Warm Superterran	? - 26.2 - 9.0	2.5	0.92	250	125.4	854	0.70
			033. Kepler-298 d	K-Warm Superterran	? - 26.8 - 9.1	2.5	1.29	271	77.5	1545	0.68
			034. KIC-5522786 b	A-Warm Terran	5.8 - 1.8 - 0.8	1.2	2.70	305	757.2	-	0.67
			035. Kepler-174 d	K-Warm Superterran	? - 14.8 - 5.5	2.2	0.43	206	247.4	1174	0.61
			036. Kepler-296 f	M-Warm Superterran	28.7 - 6.1 - 2.5	1.8	0.34	194	63.3	737	0.60
			037. GJ 682 c*	M-Warm Superterran	≥ 8.7	1.4 - 1.9 - 2.5	0.37	198	57.3	17	0.59
			038. Wolf 1061 d	M-Warm Superterran	≥ 5.2	1.2 - 1.7 - 2.2	0.28	182	67.3	14	0.56
			039, KOI-4427 b*	M-Warm Superterran	38.5 - 7.4 - 3.0	1.8	0.24	179	147.7	782	0.52

Habitable ≠ Inhabited

How will we know?

The spectrum of an inhabited planet

Simultaneous presence of:

- Water
- Ozone (Oxigen)
- Carbon Dioxide

These three gases cannot co-exist in the atmosphere of a planet without the presence of life. Life changes the atmosphere of a planet

Earth's Transmission Spectrum

Blue planet?

Palle et al, Nature, 2009

© Daniel López

Surface Biosignatures/Bioclues

Chlorophyll

Surface Biosignatures/Bioclues

Life changes the *Surface* of a planet

The terrestrial vegetation can be detected although the signal is small ...

Montañes-Rodriguez et al ApJ, 2006

Extrasolar planets are expected to exhibit a wide range of evolutionary stages, as the Earth did.

What was detectable then?

The Archean Earth

• The Earth has been inhabited for at least 85% of its history

• We focused on Earth 3000 million years ago, when the atmospheric composition was very different from today's and the Sun was $\sim 20\%$ less bright

Purple bacteria

• One of the first life forms that colonized our planetAnoxygenic photosynthesis. Color: red, brown or purple

Rotational variability

• Purple bacteria in coastal areas: most likely scenario

• Purple bacteria readily detectable in the cloud-free case and still visible in the cloudy case

Sanroma et al, ApJ, 2014

Biomarkers in Time

So, how close we are?

James Webb Space Telescope - 2018 Not habitable Earths in general (Hot Superearths) Atmospheric characterization via High-Res Spec (FOV, +AO) 2025-2030

GIANT MAGELLAN TELESCOPE

EUROPEAN EXTREMELY LARGE TELESCOPE

THIRTY METER TELESCOPE

Detection of biosignatures in Earth-like planets

Detection of oxygen in transmission

Snellen et al, 2013

Transmission spectroscopy

M dwarf Trappist 1 b & c:

•1.3-1.7 um H₂O band at an SNR of 6 in two transits
•0.9-1.1 um H₂O band in 4 transits
•CO₂ in 4 transits.
•molecular oxygen detected in 25 transits.

For these planets, the transit duration is less than 1 hour.

Direct detection of the planet's reflected light

AO+ IFU Reflected light crosscorrelation signal of the direct surroundings of Proxima, showing Proxima b at 48 mas

Cross-correlation signal from the planet can be seen at ~8 sigma level in 7 nights, assuming an AO system similar to that of MICADO

With EAO system (EPICS) 10 x faster

Word of caution: Relying on M stars

**

It's not easy to live around an M-star

Barnes et al. 2016

Exoplanet Atmospheres : transmission vs direct light

Probability of transits of Earth - Sun 0.5% Probability of transit of Earth - M star 1-2%

•We will only be able to explore in transmission 1/200 of the closest Sun-Earth twins
•We will only be able to explore in transmission 1/50 of the closest Earth-like planets around Mstars
•Probabilities and distances = photons

Transmission spectroscopy probes the (upper) atmosphere of the planet

Reflected light from telluric planets probes down to the surface, including surface features (biomarkers)

Conclusions

- ELTs will be the first machines to have a shot at detecting biomarkers
- Stick to simple detection of atmospheric compositions
- Success will depend on
 - Actual rate for life development for HZ planets around M stars
 - Capability of the available instrumentation to explore a large enough sample of planets (non-transiting)

