Solar System Small Body Science with the TMT

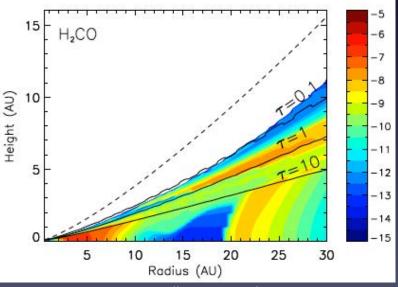
K. Meech TMT Science Forum, Mysore India

November 7, 2017

Courtesy: NASA/JPL-Caltech

New Worlds New Horizons: Habitable Worlds

- Decadal goal: understand chemical/physical processes of building habitable worlds
 - Small bodies will provide key constraints understanding the process in our solar system


Dynamics & Chemistry

- Disk Chemical Models
 - Chemical network + hydrodynamic model
 - Results in a layered structure
- New Dynamical Models

Key observational constraints

- Resolved disk chemical observations: ALMA
- Comet volatile chemistry: JWST, EELTs, missions
- Characterizing new classes of small bodies → dynamics

Fractional abundances

Willacy & Woods 2009, ApJ 703, 479

Small Body Tracers

Comets – Ground Based – <u>30 years of effort</u>

- Parent organics & daughter fragments chemistry uncorrelated with dynamical type
- Isotopes D/H, ¹⁵N/¹⁴N, ¹³C/¹²C (~20)
 - Space Missions (Pre-Rosetta)
 - CO₂ a major driver of activity (uncorrelated with dynamics)
 - Comets are very low density, very low thermal inertia
 - Very dark organic rich surfaces
 - Silicates nebular processing
 - Stardust significant nebular mixing

Meteorites

Alexander, C

- Aqueous alteration (everywhere)
- Chondrite classes different zones
 - No Earth feeding zone material

0

Small Body Volatile Tracers: Comets (Rosetta)

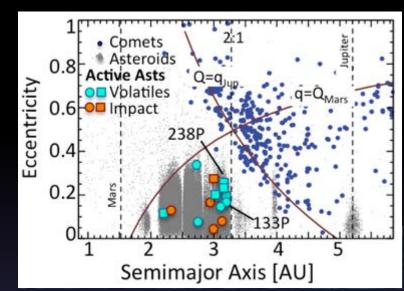
Credit: ESA/Rosetta/MPS

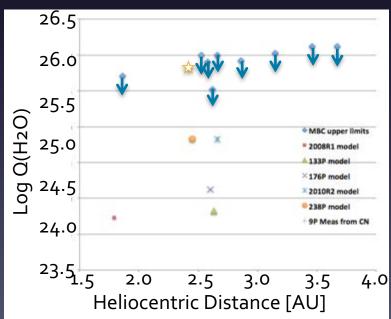
Formed very cold


- Abundant supervolatiles: CO (13%), $CO_2(8\%)$, $O_2(4\%)$, $N_2(0.07\%)$, noble gases
- Inheritance from pre-solar cloud .

Little processing since formation

- Uniform interior


Structural clues to formation processes


- "goosebumps" signature of accretion?
- Tensile strength very low (3-30 Pa), with harder substrate (kPa-Mpa; snow ~100 Pa)
- Layering & bilobate structure gentle collisional growth?

Seeking Water...

- Relevant Objects
 - Main Belt Comets
 - Ceres
 - NEO as a resource
- Direct Detection not possible yet
 - Sensitivity with Keck / Herschel 1-2 orders of mag too low

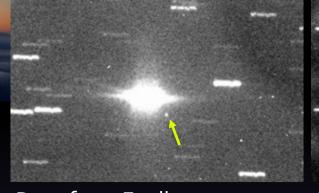
• Solar System formation modeling challenges

- Exo solar system architecture
- Small size of Mars
- Overcoming the m-scale barrier

• A Suite of Models

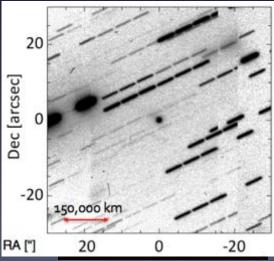
- Pebble Accretion
- Grand Tack / Nice Model
- Depleted disk

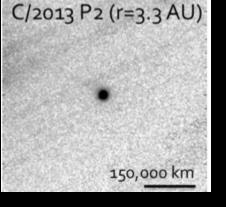
Izidoro, 2013


• New classes of small bodies provide constraints / tests of models

- Manx comets, Interstellar objects
- Challenging to observe

Pan STARRS1, Maui


An Unusual Discovery – 2013



Data from Faulkes 2m

Data from CFHT 3.6m (MKO)

- Aug 4 Asteroidal object discovered by Pan-STARRS1 (2m)
- July-Aug Pre-discovery images gave it a long period (LP) comet orbit
- Aug 6 Amateurs report activity using a 0.4m telescope
- Aug 6 Faulkes telescope (Maui) no comet activity
- Aug 7 CFHT image no obvious activity, but nebulosity
- Aug 8 Deeper image from CFHT (1560 sec) → activity?
- Sep 4 Gemini 8m 26 min → faint coma

r=3.3 AU, Tail < 1 x 10⁴ km 26 min, 8 m telescope

"Manx"

r=3.2 AU, Tail > 1 x 10⁶ km 16" telescope, 8 min

20" telescope, 5 min

Why is this so unusual?

	C/2009 P1 Garradd	C/1995 O1 (r=3.0 A	AU)	Comet	
家の			•	C/1995 O1	
km .				C/2009 P1	
		19 million km	km	ISON	
,			KIII	C/2012 K1	
	r=3.6 AU, Tail > 3.6 x 10 4" telescope, 8 min,	⁵ km		C/2011 L4	
	4 telescope, o min,			C/2013 A1	
				C/2012 F6	
	C/2013 A1 Siding Spring	C/2012 F6 Lemmon	C/20	012 K1 PanSTAR	RS
km	r=3.4 AU,	r=5.3 AU,	r=2.8	BAU,	

20" telescope, 10 min

r=2.8 AU, 20" telescope AU

> 13

>10.7

>9.3

>8.8

>7.9

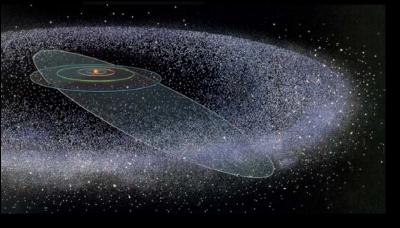
>7.2

>6.9

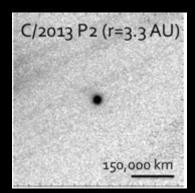
TA

210

224


185

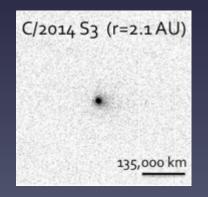
220

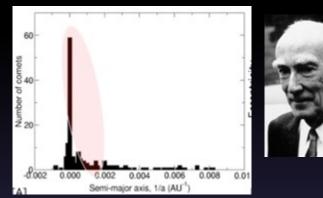

202

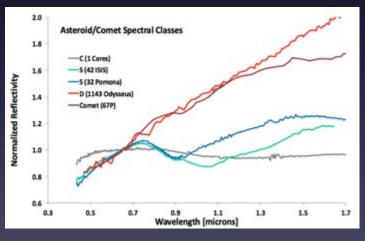
232

217

So What is a Manx?

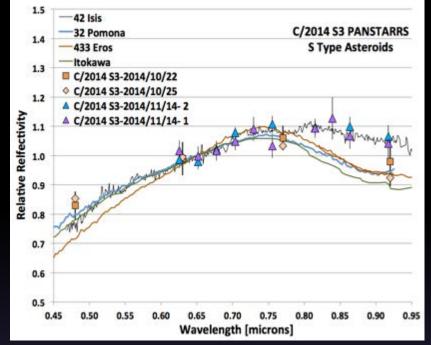



• Possibilities


- Nearly dead comet? (Oort's Frosting)
- A modern asteroid ejected outward?
 - Predict < 1 per million years

• Spectroscopy to identify what these are

- Working to analyze spectrum of the first one
- C/2014 S3 (PANSTARRS) discovered 9/22/14

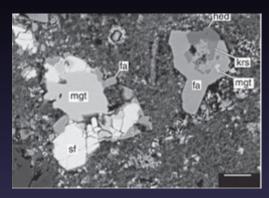


The Race to get its composition

- CFHT: Manx is very faint \rightarrow need a big telescope
- Ask for time on Maunakea Gemini
 - No time available
- Request time on the VLT in Chile
 - 6 hrs from proposal to approval, late on a Friday
 - Telescope observed the comet 2 days later (11/18)

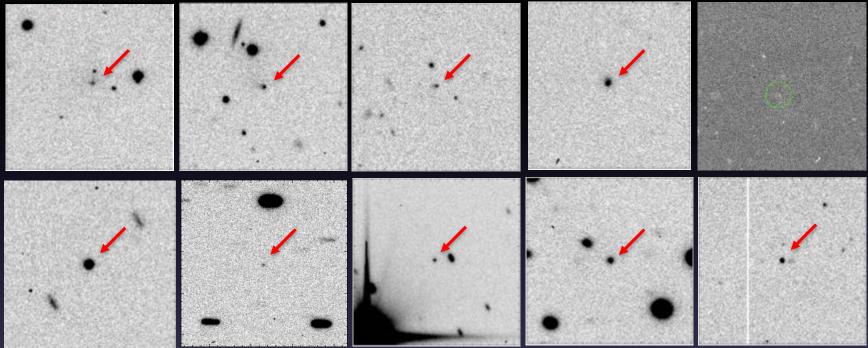
Reference spectra from SMASS – Binzel et al

S type asteroids •


- In the inner asteroid belt today no ice
- S types are related to ordinary chondrites (OC)
- Shallow 1 μm band associated with most primitive least heated OCs (UOCs)
- Information about OC's past •
 - New work showing aqueous alteration (Doyle, Krot, 2015)
 - Consistent with low water:rock (0.1-0.2)

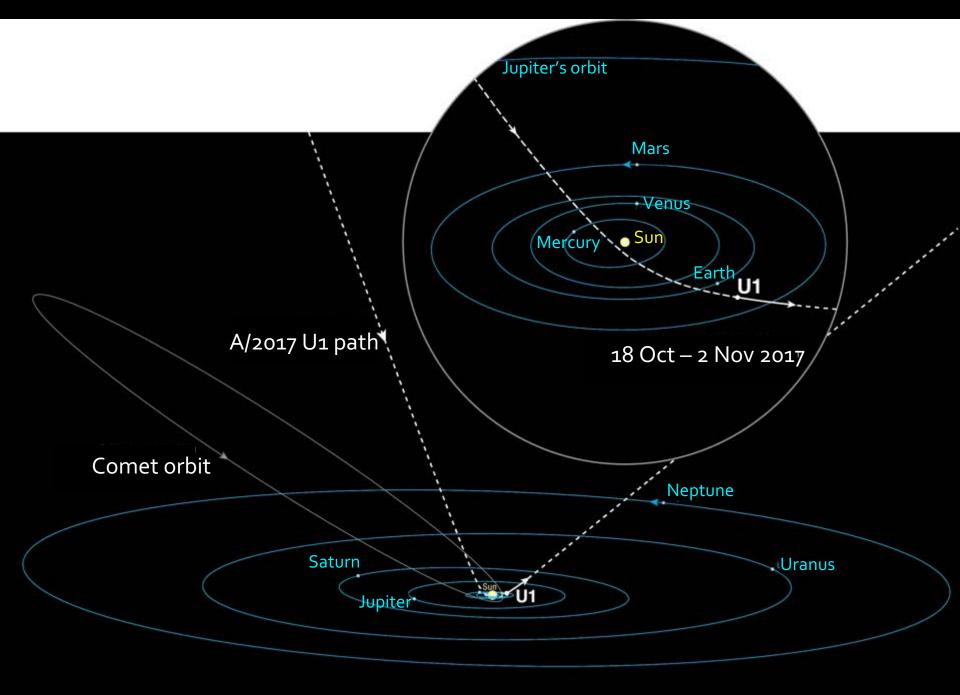
We may be seeing fresh "preserved" Earth building material

A Spectrum & Colors


• C/2014 S3

- Spectrum is inconsistent with primitive C, P, D types
- Statistically consistent with rocky inner solar system material (S-type)

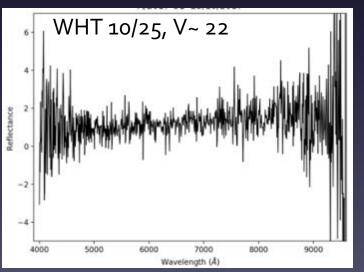
A Clowder of Manxes . . .

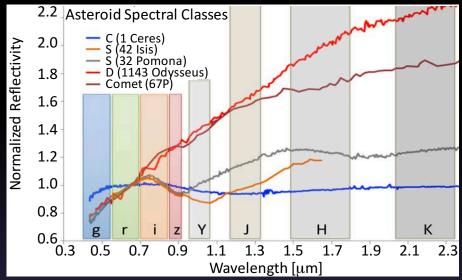


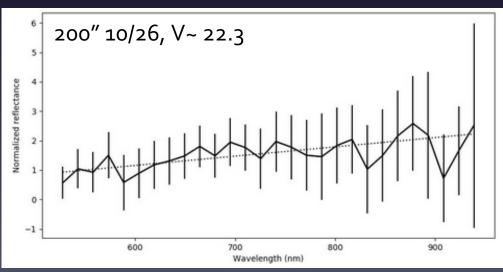
• Distinguishing dynamical models

- Different solar system forming models make different predictions
- Need to observe ~50-100 to begin to rule out models

A Case Study: A/2017 U1


Sun	Mon	Tue	Wed	Thu	Fri	Sat
← Sep 9 Perihelion						14- Close Earth approach, CSS Pre-covery
15	16	17	18-PS1 Pre-covery	19- PS1 Discovery	20	21
22- Hyperbolic orbit confirmed	23-DD prop VLT, GS; VLT Approve	24- GS prop Approved	25-VLT Obs, HST prop sub, UKIRT DD award; ★	26- VLT, GS obs; HST Approve ☆	27- GS,CFHT, UKIRT, Keck obs	28- UKIRT obs ☆
29	30- 🖈	31- Nature paper submit	1	2	3	4
★ = other ob	servations	26 27 28 2458040		ST observations	5	




What could be done now . .

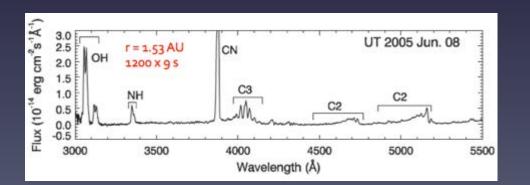
What was done

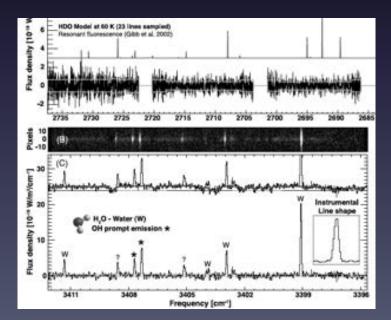
- Spectral reflectivity (photometry)
- Spectrum
- Rotation, shape, size
- Astrometry

A. Fitzsimmons

J. Masiero

LSST+TMT




- LSST Expectations
 - Now that we have seen the first and understand search strategies many will be seen
 - Characterization has implications for planet formation models
- TMT-EELT capabilities
 - Interstellar objects
 - WFOS S/N ~ 100 for mag 26 in 300 sec \rightarrow light curve
 - Many lightcurves spread in time \rightarrow shape
 - We can get high quality low resolution spectra in vis-near IR
 - Other small bodies
 - Sensitive searches for water from the ground
 - Statistically significant D/H measurements on comets
 - Solar system insights require investigations of ensemble properties

Enabling Capabilities

Operational

- Full queue scheduling for rapid ToO response
- Rapid instrument switching
- Ability to guide at non-sidereal rates
- Instrument capabilities
 - Optical + near IR low resolution spectra (surface mineralogy)
 - High resolution $\lambda/\Delta\lambda$ near IR spectra (organic parent volatiles, isotopes)
 - High resolution $\lambda/\Delta\lambda$ optical spectra (isotopes)
 - Low resolution Spectroscopy in visible UV
 - OH 308 nm, CN 388 nm water detection

