HROS: A New Window to Stellar Processes

Aruna Goswami Indian Institute of Astrophysics Bangalore

Scope of Discussion

- Current issues in Stellar Astrophysics
- Observational capabilities required to address these issues
- Current limitations in our investigation of stellar processes
- Most promising observations expected to be enabled by HROS
- What theoretical works are needed to explain the observations ?
- Potential synergies between TMT-HROS and other (TMT) facilities
- Complementary Efforts

- Probing the oldest stars: MW and the Local group
- Stellar nucleosynthesis
- Chemical Evolution: MW, Local Group, Nearby Galaxies
- Stellar Astrophysics (Validating theories with observations)

Probing the oldest stars

Exploring the Universe with metal-poor stars

- Nature of Pop III stars
- Yields and explosion properties of first SNe
- Are the Yields of first SNe different from today's?
- The primordial stellar mass function
- Critical metallicity for transition from Pop III to Pop II stars
- Early low-mass stars formation and connection to CEMP stars
- Nucleosynthesis processes and sites of elements formation
- Nucleo-chronometry of the oldest stars
- Did the Galactic halo formed from accreted satellite?
- Can we identify accreted dwarf galaxies in Galactic halo?
- Did the first stars formed in dwarf galaxies?
- How did chemical evolution proceed ?

Current limitations and observational challenges: Examples

Strongest optical Fe line at 3860 Å of the SUN

- ◆ Long Exposure time (~18 hrs, for HE 1327 -2326 with VLT/UVES)
- Lowest observable metallicity in the halo, [Fe/H] = -7.3 (Frebel et al.)
- ◆ SMSS J031300.36 670839.3 ([Fe/H] = -7.1) (Keller et al. 2014)
- ✤ No Fe lines detected in 3500 3800 Å spectrum
- ✤ (R ~ 35000, S/N ~ 120, Exp ~ 13 hrs)
- Within reach, to find MP stars closest to the First Stars require TMT/HROS

TMT/HROS Spectrum -

• Vmag ~ 21, R ~ 40000, S/N ~ 200 , Exp time ~ 4 hrs.

Characterizing the oldest stars -SNe best-fit yields and observations

Origin of HMP stars -

- Inheriting the ejecta from a single SN II,
- Multiple generations of SN,
- Result of binary mass transfer ?
 Joggerst et al. (2010)

HE 0557-4840

Well reproduced (above Na) by the z15G model yields.

HE 1327-2326 and HE 0107-5240

High C, N, O: Not well reproduced by z15D and z25D models

Detailed measurements of the elemental abundances of metal-poor stars with peculiar abundance ratios, will provide useful constraints on the existence and fraction of very massive stars in the early universe (Karlsson et al. 2008).

Li Abundance - discrepancy

Observed Li plateau 2-4 times lower than CMB prediction

HE 1327-2326 - Log ε(Li) < 1.6 WMAP Primordial Li - Log ε(Li) =2.6, -- from baryon-to-proton ratio.

Chemical evolution: MW and Dwarf galaxies

- Formation of the first low-mass objects
- The formation history of the halo
- Did the Galactic halo formed from accreted satellite?
- Can we identify accreted dwarf galaxies in Galactic halo?
- Did the first stars formed in dwarf galaxies?
- How did chemical evolution proceed ?

Are the Galactic building blocks different from surviving dwarfs?

Abundance ratios as a function of iron abundance in S1020549 and other metal-poor stars. In eight elements, S1020549 (big green filled circle at [Fe/H] -3.8) is compared with halo stars (black circles), ultra-faint dwarf galaxy stars (blue diamonds) and the brighter dwarf galaxy stars (pink and yellow diamonds). Small green circles indicate higher metallicity Sculptor dwarf galaxy targets (Frebel et al.)

Neutron-capture Nucleosynthesis : abundance anomalies in Ultra Faint Dwarf galaxies -

> Neutron-capture elements are deficient in the Local Group !

D119: A red giant in the Draco Dwarf Spheroidal galaxy (Fe/H = -2.95); Dotted lines: HD 88609, of similar metallicity (Fulbright, Rich & Castro 2004).

Hercules dwarf spheroidal galaxy shows similar deficiencies (Koch et al. 2013).

Roederer et al. 2016, AJ,

Roederer et al. 2016, AJ,

Constrints on r-process from chemical abundances of dwarf galaxies

- MW stars: [Eu/H] increases with increasing [Fe/H]; r-process enriched stars are found with [Fe/H] < -3.0
- Faint classical dwarf galaxies stars: constant [Eu/H] with respect to [Fe/H] (Tsujimoto & Shigeyama 2014)
- Ultra Faint Dwarf galaxies are found to host r-process rich stars Ji et al. 2016, Roederer et al. 2016 (Reticulum II, at d = 32 kpc)
- R-process is a rare process compared to normal core-collapse Supernovae with no (or little) contribution to Fe enrichment
- Proposed sources of r-process: NS-NS mergers; Possible to work at very low metallicity, [Fe/H] < -3.0. Difficulty in NS- NS merger scenarios?

Cosmo-chronometry of the oldest stars

²³²Th (14 Gyr), ²³⁸U (4.5 Gyr): Radioactive, Long-lived.

CS 22892-052, r II star, (14 Gyr, Th/Eu) Sneden et al. 2003 CS 31082-01, (14 Gyr, Th/U), Cayrel et al. 2001 Ranges from 11 – 14 billion years -provide a lower limit to the age of the Galaxy. U (3859 Å), Pb (4057 Å) --- strongest optical transitions

(Blends with CH features in CEMP stars)

Useful chronometers : Th/U, U/Os, U/Eu, U/Th

 $\label{eq:relation} \begin{array}{l} R > 60,000, \ S/N \sim 500 \\ at \; 4000 \; \mbox{\AA} \end{array}$

Estimated performance on TMT

TMT - C-HROS

Resolution	Seeing (90% encircled)	S/N	Limiting mAB in 6 hrs	
100,000	1.0	100	17.5	
100,000	0.5	100	18.9	
100,000	0.2	100	20.4	
100,000	0.5	50	19.4	
50,000	0.5	100	19.7	
50,000	0.5	50	20.5	
20,000	0.5	50	21.2	
20,000	0.5	20	22.3	
Courtesy Cynthia Froning				

Limiting distances for spectroscopic observations of point sources

	Mv (mag)	HROS (Mpc)
Blue Supergiant	- 6.7	7.0
Red Supergiant	- 5.9	3.5
RGB Tip	- 2.7	0.5

Assumes 4 hr integrations at $\lambda/\delta\lambda = 50000$, Corresponding central WL is 5000 A, Slit length: 5", S/N = 100 (J Cohen)

Thank you