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NIRPS overview

e Infrared channel to HARPS at the La Silla 3.6-m telescope
o Optical+IR leverage to filter activity
e R=100 000 (80 000 high-efficiency fibre)
e 04" (0.8") fibre, AO-fed
o Very compact instrument
o >2 smaller than SPIRou
e 0.36-0.68um + 0.98-1.80um simultaneous coverage
o Provision for a K-band upgrade
e Designed for <1 m/s repeatability

o UrNe + Fabry-Pérot

o Laser comb option being pursued
e H4RG science array
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NIRPS who’s who

e Partners: Canada, Switzerland, Spain, Portugal, Brazil, France
e Tcam

o Co-PIs : R. Doyon (UdM), F. Bouchy (Geneva)

o Co-Is: F. Pepe, N. Santos, R. Rebolo, X. Delfosse, J. De
Medeiros, G. Wade

o Proj. Scientist : E. Artigau (UdM)
O Proj. Manager : O. Hernandez (UdM)

o System Engineer : F. Wildi (Geneva)
e Strong overlap with the SPIRou

O Science-wise (no spectropolarimetry)
o >50% of NIRPS team is in SPIRou including the two co-Is

o Technically, lots of design recycling



+
NIRPS timeline

e 2014 : Call for proposals for NTT
Instrument

e 2015 : No PRV instrument selected...

but offer by ESO to recycle NIRPS
design as an IR channel for HARPS
e Jan. 2016 : PDR
e May. 2017 : FDR
o Construction rapidly progressing
e First-light in the lab : m1d-2018
e Mid-2019 : First light
e 2020-2024+ : At least 5 year GTO
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NIRPS : the deal

e Somewhat peculiar a non-ESO institution funding an instrument for La Silla!

o Funds through the Canadian Foundation for Innovation
® 40% of the first 5 years : GTO for M dwarf exoplanets

o Yes, that’s 725 nights for the GTO team!

o More than all canadian time at CFHT over the same period

® Three GTO programs
o A survey for imagable planets around very nearby Ms (360 nights)
m Target finder for ELTs!
m Determine 7, for mid to late M dwarfs
o Transit (mostly TESS) follow-ups (240 nights)
o High-resolution transit spectroscopy (125 nights)
m Pathfinder for Earth-sized planet characterisation with ELTs
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NIRPS : an instrumental pathfinder

e First AO-fed fibre HRS
o Allows for much more compact instrument designs
e Grating-based HRS scale 1n size linearly with ...
o Fiber size on sky
o Telescope diameter
o ... factor of 7.5 worse for TMT
e Not a monomode fibre...
o Modal noise mitigation with the AO modes
e Fibre-based HRS transit spectroscopy
o Much more stable PSF than for slit spectrographs




Why M dwarfs and near-infrared

e planet/star radius ratio as good as it gets
for main sequence stars
o Transit signal proportional to (Rp/R*)2
e M dwarfs are numerous
e Many Earth and super-Earths around M
dwarfs
e Flux peaks in the nIR... best RV in that
wavelength domain?
o 0.7-1.0um as good as nIR due to
deeper lines
e True show-stopper : stellar activity
o Lower activity signal in the nIR
o Even better with simultaneous
optical+nlIR
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Finding imagable planets

e All directly imaged planets are self-luminous young,
massive gas giants

e One of the biggest near-term (<20 years) goal : direct
imaging of Gyr-old planets in reflected light

o No age constraints
s Many exciting targets within a few parsec

o Contrast is much less dependent on planet mass
(through radius)

o Strong contrast dependence with orbital separation

e Hybrid high-contrast imager + high-resolution
spectrograph is arguably the best approach for
ground-based characterisation

o One planet is (maybe) observable with an 8-m

o Tens of planets accessible with ELTs



Finding imagable planets
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Spectral Resolution [log]

Finding imagable planets
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Finding imagable planets

e One cannot envision a fishing expedition on any telescope with ~100 h/target!
e Planets must be identified in advanced...

o These planets can be identified now!
e Major boost for instrument builders to have an actual target list!

e Deep RV survey of nearby Ms

AJ paper submitted by R. Cloutier (UofT/UdeM PhD)

109 targets

190 visits per target

~1.5 m/s RMS per visit

Very detailed error budget, activity/filtering, window function, etc

A handful planets may transit, most likely none that can be imaged with TMT

o O O O O O
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Finding imagable planets
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Pmdmg 1magab1e planets
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Finding imagable planets
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Finding imagable planets
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Transit follow-ups

e Mostly TESS
o  AO system designed to enable
observations of the median TESS target
with high-resolution fibre
e Mass and density determination
o Huge scatter in the radius/density
diagram for Earth-sized planets and
super-Earths
e Density 1s key for transit spectroscopy
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TESS targets well suited for RV
follow-ups
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+Good complementarity between
HARPS and NIRPS
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4+ The bulk of TESS targets should be amenable
for atmospheric characterization with JWST
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Transit spectroscopy at

high-resolution
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Transit spectroscopy at
high-resolution

o ... and detect oxygen on it!

Possibility to study an Earth analog with the TMT

Median TESS planet host with T <3800 at /=12.7

o ~10 Earth-sized planets around stars brighter than I=11.1

~100h on TMT
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Conclusion

e HARPS+NIRPS will be a prime facility for RV
exoplanet searches in the Southern sky up to +30N
o Impressive number of GTO nights will be as
important as instrument performances
o % of the sky area accessible to TMT 1is accessible
to NIRPS
e NIRPS is paving the way for various exoplanet
research avenues to be done with TMT
o It 1s the sonar for the fishing expeditions!




