

DUNLAP INSTITUTE for **ASTRONOMY** & **ASTROPHYSICS**

GIRMOS: Gemini Infrared Multi-Object Spectrograph A TMT Pathfinder Instrument

Suresh Sivanandam (PI) University of Toronto

Team

GIRMOS Technology

Project Engineer: Darren Erickson AO Lead: Scott Chapman

Adaptive Optics

Andersen, Lardiere, Veran, Bradley, Hickson, Lamb, Sivanandam, Correia, Akiyama

MEMS Deformable Mirrors

Chapman, El-Sankary, Shafai

NIR Spectrographs

Lead: Sivanandam Moon, Andersen, Simard, Thibault, Akiyama

Calibration

Lead: Hickson

Optical Design and Fabrication Lead: Thibault

Chen, Sivanandam, Moon

Data Management and Pipeline

Lead: Sawicki

GIRMOS Science

Project Scientist: Adam Muzzin

Distant Galaxy Formation and Evolution

Chapman, Sawicki, Abraham, Murray, Ellison, Simard

High-z Clusters of Galaxies

Yee, Muzzin Observational Cosmology

Carlberg Low Redshift Galaxies and AGN

Sivanandam, Yee, Andersen, Davidge, Akiyama

Stellar Populations

Sivanandam, Davidge

Metal Poor Stars

Venn Star Formation Murray

Partners: University of Toronto, Dalhousie, UBC, UVic, Laval, Sammini Scientific-Herzberg, UMainytoba, York U, Gemini Obs., International Institutions.

Age of Integral Field Spectroscopy of Nearby Galaxies

- 1. How do galaxy disks grow?
- 2. How do bulges and ellipticals grow?
- 3. What affects star formation?
- 4. How have galaxies assembled and what are the relative contributions of their components? Spatial Resolution

Age of High-z Integral Field Spectroscopy

Wisnioski et al. (2014)

Age of Large Scale IFS Surveys

Visible

- ★ Several wide integra' spectroscopic surv
- \star Focus mainly on r
 - SAURON (Ng
 - ATLAS^{3D} (Nga
 - CALIFA (Ngal =
 - SAMI (Ongoing
 - MaNGA (Ongoing,
- Increasing utility of 2-4 h. telescopes

frared

>tegral field
/eys
laxies (z~1-4) or
laxies
lo)
g-limited
(Ngal = 600)
S (Ngal = 1000)

or larger telescopes and long integration times

The Need for High Angular Resolution and High Sensitivity

KMOS

- Existing Multi-IFU instrument (KMOS) does not have sufficient spatial resolution to resolve high-z galaxies in detail
 - SINFONI SINS survey a benchmark for high-z galaxy science
- Increased spatial resolution can resolve individual HII regions at increased sensitivity so long as system throughput is sufficient

Context: Filling the Science and Technology Gap

IRMOS-TiPi (Ellis et al. 2006)

- No. 1 in TMT Science Advisory Committee's Priority Ranking
- Tall tent poles: Adaptive Optics Feasibility, Complexity, and Cost
- Spawned Canadian/Japanese Effort to Develop Multi-Object Adaptive Optics (RAVEN)

Context: Filling the Science and Technology Gap

JWST Science Themes (Credit: NASA)

EUCLID Wide-Field Telescope

- Detailed follow-up observations of exciting JWST and EUCLID targets will be required from the ground in the next decade
- Most compelling workhorse instrument: AO-fed, multi-object integral field spectrograph with high spatial resolution and sensitivity
- GIRMOS is a pathfinder that can lead to an MOAO-fed TMT instrument

Leveraging Gemini AO infrastructure and Canadian MOAO expertise

Gemini GeMS MCAO Observation of NGC288 Credit: Gemini

- GeMS MCAO can correct over a 2' field-of-view with Strehl ratios of ~20-30% in H and K-bands
 - Significant upgrades planned over the next year to improve sky coverage and laser performance
- Additional MOAO corrections to enhance imaging performance by building upon our RAVEN work on Subaru

Instrument Block Diagram

System Parameters

Parameter	Requirement	Parameter	Requirement
Telescope Feed	Gemini-South 8.1- meter MCAO f/33 beam	Individual IFU Field-of-view (arcsecs)	0.75x0.75 1.5x1.5 3.0x3.0 6.0x6.0 (Combined)
MOAO Performance	~50% Encircled Energy within 0.1" (H and K-bands)	Spatial Pixel Size (milli-arcsecs)	25x25 50x50 100x100 100x100 (Combined)
Field-of-regard	2 arcminute diameter patrol field	Spectral Resolution R	3000 or 6000
Wavelength Range	1.1-2.4 μm (J, H, or K-bands)	Spectrograph Throughput	>45%
Number of IFUs	4 with possibility for more	Detector	2Kx2K HAWAII-2RG for every two spectral channels
Gemini Gel Iodular trographs	MS Focal Plane Slice Slicer Mirro FOV of Channel 1: 1.5x1.5" F/#: 51	or Pseudo Slit F/#: 8 15.4mm	Spectrograph F/#:9 F/#:9 Spectra of Channel 2

Comparison with Existing and Future Capabilities

- Largest field-of-view optimized for maximal information content from z~2-3 galaxy.
- GIRMOS is competitive with KMOS in terms of information content despite having 6x less multiplexing.
 - Upgrade path for additional arms included.
- GIRMOS will be the most powerful AO-fed instrument for integral-field spectroscopy in the foreseeable future.
 - GIRMOS can inform ELT instrument development with onsky scientific and technical experience.

Information Grasp

Information Grasp = Étendue (Collecting Area * FOV) x Wavelength Coverage x # of Spaxels (measured for H-band)

Overall Sensitivity Comparisons

• Able to resolve and detect individual star forming regions in typical z~2 galaxies

• Sensitivity limits reach 1 M_{\odot} yr⁻¹ within a ~0.1" HII region

Key Science Drivers: Galactic Science

75"x50" field of within the galactic bulge with low metallicity candidates selected from HST SWEEPS WFC3 field. Prime targets are encircled at 2" and 4" to show lack of crowding.

- Near-field cosmology in the Galactic Bulge
 - Low metallicity stars
- Low-mass companion/ exoplanet searches in star clusters
 - Star formation within the Milky Way

Key Science Drivers: High-z Science

Clusters Brightest Cluster Galaxy Formation

Hubble Space Telescope (HST) image of SpARCS1049 Cluster, showing the complex morphology of the core (Webb et al. 2015a). The combined GIRMOS field is shown.

Galaxy Lenses

Serendipitously discovered strong lens system, where GIRMOS can excel at obtaining spectra of distant lensed galaxies.

 In addition to being able to resolve 4 galaxies within each pointing, multiplexing other unique advantages

Summary

- Multi-object AO integral field spectroscopy critical for future large surveys
- GIRMOS will be the most powerful AO-fed instrument for integral-field spectroscopy in the foreseeable future until ELT multiplexed spectroscopy becomes available
 - GIRMOS can inform TMT instrument development with on-sky scientific and technical experience
 - Upgrade path for additional arms considered

y development plan that will

Gear Moss

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

www.dunlap.utoronto.ca

Dunlap Institute for
 Astronomy & Astrophysics
 UNIVERSITY OF TORONTO