THIRTY METER TELESCOPE

MICHI: A Thermal-IR Instrument for the TMT

Chris Packham

India T

UTSA & NAOJ On behalf of the MICHI team

ILLUM IN THE REPORT OF A TABLE

Outline

- 5 key science cases
- 4 key technical advances
- 3 collaborations
- 2 other transformative thermal IR observatories
- 1(+) Conclusion

1. Exoplanets: High Spectral Resolution

- Pioneering Doppler imaging work at VLT (slides from J. Birkby)
- Rotation period of planet measured as 8.1 hours
- Time needed
 Spectra extracted at every position along
 on TMT is ~
 the slit and stellar/telluric profile removed

few hours for nearby sources

For the next advance, # sources in the few 10's for a few hours of TMT time

Similar #
 brown
 dwarfs
 available

CO detected in β Pic b. Strongest CC at RV = -15.4±1.7 km/s at ~0.4"

Consistent with position from direct imaging and with a circular orbit. H_2O only seen at SNR~2. No methane.

1. Exoplanets: High Spectral Resolution

-5000

0

from winds and rotation

- Technique can also measures molecular abundances & infers atmospheric chemical processes
- Uniquely possible with high spatial & spectral resolution
 - May require coronograph for some objects

HDS is sensitive to line shape/shift

Kempton et al. 2012; Showman et al. 2013

1. Exoplanets: High Spectral Resolution

- Planets dynamically interact with their parent disk, leaving footprints which could be more readily detected than planets themselves
 - A giant planet may open a gap in the gas disc
- This has been proposed to create observable spectroscopic signatures in the 4.7µm rovibrational CO lines (TMT DSC & Regály et al. 2014)
 - Prospect of using kinematic gas tracers to detect the growth of giant protoplanets and their interaction with the disc
- Observations will reveal connection between discs & planets
 - Key step toward the final goal of understanding planet formation

2. Exoplanets: High Spatial Resolution

- N-band direct imaging simulations of our 'exo-Solar System' around Alpha Centauri
- Number of sources limited (~10), but science return is of course high
- To know more about this science case, see C. Marois' talk during the high-contrast imaging splinter session

Left: Simulated Gemini 100h exposure. Right: Similar simulation for 25h TMT Courtesy of C. Marois

3. Protoplanetary Discs: High Spectral Resolution

- Spitzer protoplanetary disc observations of strong emission shows oxygen & carbon species (e.g. Najita+2013)
 - C/O ratio relation between disks and exoplanet atmosphere (Oberg+2011)
- Snow line in discs important to probe water location
 - Observed by Spitzer, requiring high spatial & spectral resolutions
- Huge increase in available objects
 - 8m (~30) to 30m (~100's)
- Possibility of pre-biotics at such resolutions

4. Protoplanetary Discs: High Spatial Resolution

- Spatially resolved N-band spectra of β Pic debris disk (Okamoto+2004)
- Spatial difference of dust feature
 - Central condensation of crystalline silicate grains
 - Several local peaks of small amorphous silicate
 - Hints of planetesimal belts and planet

4. Protoplanetary Discs: High Spatial Resolution

- Spatially resolved N-band spectra of β Pic debris disk (Okamoto+2004)
- Spatial difference of dust feature
 - Central condensation of crystalline silicate grains
 - Several local peaks of small amorphous silicate
 - Hints of planetesimal belts and planet

5. AGN: Imaging & Spectroscopy

- Torus is the cornerstone of AGN unified theories
- Spatially resolved with ALMA (Garcia-Burillo et al., 2016)
 - Outer edge/connection to host galaxy?
- JWST will advance inflow/outflow theories greatly
 - But will not resolve the torus
- 30m resolution at thermal-IR required as torus emission peaks at these wavelengths, & stellar dilution is low
 - Imaging & low-spectral R

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b): Movie courtesy of E. Lopez-Rodriguez

5. AGN: Imaging & Spectroscopy

- Torus is the cornerstone of AGN unified theories
- Spatially resolved with ALMA (Garcia-Burillo et al., 2016)
 - Outer edge/connection to host galaxy?
- JWST will advance inflow/outflow theories greatly
 - But will not resolve the torus
- 30m resolution at thermal-IR required as torus emission peaks at these wavelengths, & stellar dilution is low
 - Imaging & low-spectral R

CLUMPY models of dust distribution & IR emission (Nikutta, Lopez-Rodriguez, Ichikawa, Levenson, Packham)

5. AGN: Imaging & Spectroscopy

 Torus is the cornerstone of AGN unified theories

IWST will advance

- Spatially resolved with ALMA (Garcia-Burillo et al., 2016)
 - Outer edge/connection to host galaxy?

offset (mas)

+snr (30)

Technical Drivers: Arrays

- MICHI was baselined the 1K² Raytheon Aquarius array
 - Currently used in JWST/MIRI and adapted for ground use in VLT/VISIR & TAO/MIMIZUKU
 - Operates at 5-26µm, QE~40%, some ELFN issues
 - Raytheon does not plan for long-term availability of of this product
- Array consortium formed (lead by lves (ESO) and Packham) to improve Aquarius performance (esp. ELFN and QE)
- However, Teledyne's GeoSnap HgCdTe 1K², 2K², or 3K² is in delivery phase
 - Already several arrays delivered to an unnamed customer, test device to be delivered to consortium member for testing 1st quarter of 2018
 - Operates at 3-14.5µm, QE>>40%, likely no ELFN issues (fast frame rates, deep wells), but details need to be confirmed using test device
 - 14-bit ADC on chip, read-out electronics status TBC

Technical Drivers: IGs

- Immersion gratings hold promise of achieving high spectral R & relatively small pupil
 - Size reduced by the refractive index
- Ideal materials for thermal-IR are Ge (n~4.0) & CZT (n~2.7)
 - Ge excellent transmission <12µm, used on instruments already
 - Excellent candidate for L&M bands
 - CZT excellent transmission 3 to ~15µm; expensive
 - Excellent candidate for N band
 - Difficult to get BBAR on Ge from 3-14µm, but using 2 IGs we can optimize the AR coatings
- Work lead from Japan (Universities of Tokyo & Kyoto Sangyo, in collaboration with Canon)

Ikeda et al, 2015

Technical Drivers: MIRAO (Mid-IR Adaptive Optics) & Daytime Observing

- Daytime observing
 - MIRAO/未知 could exploit best seeing conditions in early morning hours
 - Appears feasible with no loss in performance & affords an extra 1-2 hours per night (at minimal cost)
 - We appreciate the Subaru team's R&D efforts
- Emerging strong connection to exoplanet groups
 - At TMT SF ~50% of 未知 & exoplanet splinter session is joint
 - Leveraged from science & MIRAO
 - Main links with Guyon, Marois, & Meyer

	MIR Splinter Session				
Wednesday November 8th: MICHI Key Science Cases					
Start	Title	Speaker	Sub-title	Comments	
14:30	Welcome & Goals	Chris & Christian	Joint with	Short welcome address and expression of the goals for the splinter session	
14:35	L/M-band Imaging/spec.	A. Skemer	Exoplanet Splinter		
14:50	Young disks/exoplanets	R. Dong	Session		
15:05	Protoplanetary Disks	Honda-San	_	MICHI Science case 1	
15:20	Exoplanet thermal	C. Marois	_	MICHI Science case 2	
15:35	Science hires spectroscopy	D. Mawet		MICHI Science case 3	
15:50	Coffee break				
16:10	Disc high spectral res	Greg		MICHI Science case 4	
16:30	AGN & Torus	Ichikawa-san		MICHI Science case 5	
16:50	Supporting Cases	Manoj & Vig		Other science cases that we will feature, limited to 1 page in the WP	
17:05	Supporting Cases	Jessy, Chris, Honda-san		Other science cases that we will feature, limited to 1 page in the WP	
17:20	Round table discussion	All		Discussion of current science cases, JWST/ALMA connections, mapping to instrument overview and WP	
18:00	Adjourn				
Thursday November 9th: Instrument Status					
Start	Title	Speaker	Sub-title	Comments	
9:00	MICHI	Chris	Joint with	Instrument overview	
9:10	MIRAO	Mark	Exoplanet Splinter	AO overview, daytime observing	
9:20	PSI	M. Fitzgerald	Session	Instrument overview	
9:30	High-Res. Spect. + AO	Dimitri	_		
9:40	SCExAO as a prec. TMT inst.	Olivier	_		
9:50	Round table discussions	Chris & Christian			
10:15	Coffee break				
10:30	Detectors	Chris		New technology and changing from MICHI to bMICHI	
10:40	Japan's R&D Activity	Honda-san		Development status	
10:50	Immersion Gratings	? Chris ?		Current status of the IG for L&M, N bands	
11:00	Polarimetry	Gopinathan & Manjunath		Implementation and discussion on the instrumental polarization	
11:10	IFU	Sakon-san via skype?		Development status	
11:20	Interactions	Chris		Interactaction and synergy with other TMT (and other 30m?) instruments	
11:30	Round table discussion	All		Discussion of current science cases, mapping to instrument overview and WP	
11:50	Summary	Chris & Honda-san		Conclusions of the session, outline of plenary presentation	
12:00	Adjourn				

Technical Drivers: Cold Chopper

- To remove time-variable high-background, beam switching by an internal mirror at a pupil-plane is required (cold chopper)
 - f~5 Hz (duty cycle > 90%)
 - **T~30K**, vacuum
 - Power dissipation <<1W</p>
- Currently a prototype for TAO/MIMIZUKU is undergoing testing/characterization
 - Could be the testbed/prototype for TMT/MICHI chopper

Collaborations: METIS

- Already several areas of collaboration, but could increase collaboration number and depth if MICHI proceeds
- Discussions with METIS PI (Brandl) raised possible areas
 - Array & electronics
 - Array consortium already anchored by Ives (ESO) and Packham (UTSA)
 - Cold chopping mirror
 - Data reduction software
 - High-level data interpretation, coronograph, IFU, etc.
 - PSF reconstruction from the WFS, how to get it to be useful for science obs
 - Personnel exchange between the groups, perhaps most easily imagined in AIV phases

Collaborations: PSI

- PSI & MICHI offer a continuous wavelength coverage for exoplanets from 1-14µm(+)
- Considering to use the common technical core of MIRAO for both instruments
- See Mark Chun's presentation in the splinter session

Collaborations: IRIS

- Science links are clear through, for example, the AGN science case
 - High spatial but low spectral resolution needed 1-14µm

CLUMPY models of dust distribution & IR emission (Nikutta, Lopez-Rodriguez, Ichikawa, Levenson, Packham)

Comparisons: JWST

MICHI L band 0.024", ~100K N band 0.054", ~100K

- JWST will clearly have far greater sensitivity, but is limited in spatial & spectral resolutions
 - NIRcam/spec (2.4-5µm) spatial R ~0.126", spectral R~100, ≤2,700
 - MIRI spatial R ~0.22", Spectral R~100, ≤3,710
- Unique combination afforded by TMT of
 - Excellent sensitivity & high spatial resolution (IWA) essential for exoplanet direct imaging, disc work, & AGN
 - Excellent sensitivity, & high spectral/spatial resolution essential exoplanet atmosphere & disc characterization
- Follow-up of JWST observations will often require the combination of sensitivity, spatial & spectral resolution
 - TMT/MICHI on MKO is arguably the ideal follow-up machine

Comparison to METIS

- Currently not planned to offer LTAO capability
- Currently not planned to offer high spectral R at N band
- MKO is the premier 30m thermal-IR of the 30m's
- Is essentially in a locked-down design
 - Changes that might be desirable after JWST might be difficult to implement
 - The delay of 2nd gen. instrument start for MICHI could be an advantage in this respect
- However, collaborations in obvious areas (as noted before) could reduce costs & risk, and/or improve MICHI

Why MICHI Now?

- TMT & E-ELT essentially in a dead-heat for operations start
- Exoplanet science remains a hot topic, great interest in L&M
- JWST follow-up will be crucial in the 30m era
 - Again stress that TMT on MKO is the premier thermal-IR 30m site
- Synergy of MICHI/PSI science & technology strong
- Collaborations with METIS possible now, more challenging if we move further out of sync
 - Technical, personnel, & science exchanges possible

Conclusions

We believe

compelling 5 key science cases, & numerous supporting cases make MICHI a strong 2nd gen instrument

Science case links to PSI & common technical foundation of MIRAO

- Science team has >50 active researchers from all TMT partners
 - We invite researchers to join & provide science cases
 - Join us for the thermal-IR and/or exoplanet splinter sessions
- Technical team includes USA, Japan, India, & Canada
 - R&D in progress, & nascent connections to METIS
 - MICHI working well as a science/instrument team for several years
- Excited for thermal-IR instrument on world's best thermal-IR site, primed for JWST (& ALMA) exploitation, defined science cases, links to other TMT & 30m instruments, & established/proven team

Exoplanets: High Spatial Resolution

- Black body fluxes of solar system objects observed at 10pc (Seager & Deming 2010)
 - 3 order of magnitude gain going to thermal-IR, but background becomes more problematic
- Low spectral resolution to afford basic characterization of atmospheres & clouds for J & HJs

Exoplanets: High S

- Black body fluxes of solar system objects observed at 10pc (Seager & Deming 2010)
 - 3 order of magnitude gain going to thermal-IR, but background becomes more problematic
- Low spectral resolution to afford basic characterization of atmospheres & clouds for J & HJs

- High spatial R reduces galaxy contamination
- Resolution at z=0.5
 - JWST = 1.5kpc (galactic star forming rings, etc.)
 - *TMT* = 330 pc (nuclear dominated)
- Images show 5x increase in spatial resolution
- Toward resolving the BLR noteworthy as all flew into BLR

