Science with Ground Layer
Adaptive Optics at Subaru and TMT

Yosuke Minowa, Yusei Koyama,
ULTIMATE-Subaru working group
(Subaru Telescope, NAOJ)
Outline

• Uniqueness of GLAO at TMT
 - Expected performance improvement
 - Gain from GLAO correction in visible and NIR
 - Examples of “extragalactic” science cases that would benefit from GLAO

• Subaru’s GLAO project: ULTIMATE-Subaru
 - Instrument overview
 - Technical overwrap with TMT GLAO
 - Science cases
 - Schedule
Uniqueness of GLAO

- **Seeing enhancement**
 - Improve the sensitivity at all wavelength

- **Improved spatial resolution**
 - Resolve internal structure of extended sources in NIR wavelength

- **Wide-field coverage**
 - Uniform seeing improvement
 - Wide-field survey capability

ESO-AO Modes
https://www.eso.org/sci/facilities/develop/ao/ao_modes.html
GLAO expected performance

TMT GLAO performance with AM2 by Lianqi Wang

GLAO can reduce the FWHM down to ~0".2 under moderate seeing condition
GLAO correction under bad seeing is similar to the good seeing
GLAO sensitivity gain in NIR

Point source

Extended source (galaxies with Re~0.2)

Sensitivity gain: x2.0-2.5

Sensitivity calculation for Subaru GLAO (Subaru GLAO study report 2016)
Improved Spatial Resolution in NIR

Size evolution of galaxies (Shibuya et al. 2015)

Seeing (0''5)
GLAO (~0''2)
8m AO (~0''07)
30m AO (~0''01)

Cosmic noon

Redshift

Proper scale [kpc]

0.01 0.10 1.00 10.00
0 1 2 3 4 5 6 7

z=1-3 star-forming galaxies
1~2kpc

(Subaru GLAO study report)

z=1-3 compact galaxies
< 1kpc

(van Dokkum et al. 2015)
Spatially-resolved NIR spectroscopy of galaxies at cosmic noon

- Spatial resolution of GLAO in NIR (FWHM~0”.2) can resolve the galaxies at cosmic noon (z~2) into disk and bulge (core) regions.

- When, where, and how the star-formation quenched and galaxies grew in size?

- Spatially-resolved spectroscopic survey of z~2 galaxies will provide stellar age and dynamics by tracing post-starburst features (Balmar absorption lines) in galaxies as a function of radius from the center.

- TMT/IRMOS or IRMS multi-object (IFU) spectroscopy with GLAO spatial resolution

van de Sande et al. 2013
GLAO gain in visible

- Seeing improvement in visible (10-20%) is not as large as that in NIR (especially in K-band, ~50%).
- GLAO can be used as a seeing enhancer for WFOS, HROS, or any visible instruments.
- Science cases that requires wide-field of view would most benefit from GLAO.

Additional sensitivity leverage to the IGM tomography at $z>2$

- TMT/WFOS will use many sight lines toward faint galaxies in 3’x8’ FoV (~10 Mpc) at z~2 and beyond for IGM and CGM tomography.
- GLAO will provide additional leverage to increase the number of sight lines and to decrease the survey time.
Simplify the instruments by AM2

- TMT GLAO will use an adaptive M2 (AM2).

- AM2 can feed the AO corrected light to all instruments at TMT without any complicated relay optics
 - GLAO correction for all instruments at TMT
 - Woofer for the other AO modes (ExAO, MOAO)
 - Provide diffraction limited performance in MIR with minimum increase of thermal background.

- Demerit:
 - Cost effectiveness
 - New instrument to take full advantage of GLAO (e.g. wide-field imager or spectrograph in NIR).
 - AM2 can be a single point of failure for TMT

http://www.adoptica.com/
Subaru’s GLAO project

Michitoshi Yoshida (PI, Director, Subaru),
Yosuke Minowa (PM, Subaru),
Yusei Koyama (PS, Subaru),
Ikuru Iwata, Takashi Hattori, Christophe Clergeon,
Ichio Tanaka, Naruhisa Takato (Subaru),
Yutaka Hayano, Shin Oya, Hideki Takami (NAOJ),
Tadayuki Kodama, Masayuki Akiyama,
Tatsuhiro Watanabe (Tohoku)
Kentaro Motohara (Univ. of Tokyo)
Francois Rigaut, Celine D’orgeville (ANU)
Nobuo Arimoto (Seoul National Univ.)
Subaru’s Wide-Field Strategy in 2020s

1. Very wide-field optical imager
2. Wide-field multi-object spectrograph
3. Wide-field near-infrared imager and MOS spectrograph including AO assisted IFU

- HSC (2013)
- PFS (2019)
- ULTIMATE-Subaru (2025)

- Uniform seeing improvement over ~20 arcmin FoV
- FWHM < 0.2 at K-band, which is equivalent to HST/WFIRST
- Provide Subaru’s original High-redshift targets to follow-up with TMT
- Good synergy with satellite-based survey (WFIRST, Euclid) at $\lambda < 2.0\,\mu m$
ULTIMATE-Subaru: GLAO system overview

(3) Wavefront Sensors
- Cs. Focus (FoV~20 arcmin)
- Ns.IR Focus (FoV~6 arcmin)

(1) Adaptive Secondary Mirror
Preliminary Subaru ASM design by Microgate ADS

(2) Laser Guide Star system
TOPTICA fiber laser(589nm) x 2
Generate 4 laser guide stars

Cassegrain Focus
LGS
TTGS
14' x 14'
Key Technologies for GLAO

• (1) Adaptive secondary mirror
 - Develop AM2 with ADOPTICA and Mitsubishi
 - Feasibility study for having the AM2 at Subaru
 - Handling of the AM2 during the instrument exchange is a challenge
 - Procedure to calibrate the AM2 before installing into the telescope

• (2) Sodium laser guide star system
 - Sodium LGS system from TOPTICA —> well developed technology
 - Early commissioning with the existing AO system (AO188)
 - 4 LGSF for the LTAO experiment at Subaru is being developed.

• (3) Wide-field (tomographic) wavefront sensing
 - Make use of the previous experiences
 - RAVEN/Subaru (2014-2015): MOAO science demonstrators, GLAO performance at Subaru was demonstrated to be FWHM~0’’2 at H-band.
 - On-sky test with the WFS prototype for testing the wide-field wavefront reconstruction is ongoing by Tohoku Univ. for ULTIMATE and TMT-AGE.
 - LTAO experiment with 4 LGSs is started as an upgrade of AO188.

All technologies can be connected to development and operation of GLAO at TMT.
Wide-field Instrument for ULTIMATE

Phase 1
- Reuse MOIRCS at Ns. IR

Phase 2
- Wide-field imager (WFI) at Cs.

Phase 3
- Fiber-bundle multi-IFU at Cs

Overwrap with GLAO at TMT
- Deployable fiber IFU at WFOS
- Science cases with 15’x15’ FoV

MOIRCS
GLAO first light instrument

Imager concept by HIA (J. Pazder)
- Workhorse instrument for large SSP imaging survey
- Wide-variety of narrow/medium band filters

Multi-IFU concept by AAO (S. Ellis)
- 10-40 deployable IFU with fibers
- Feed to the existing spectrograph (MOIRCS/PFS)
- Kinematic survey at z~1 like MANGA/SAMI.
Key science: Complete census of galaxy evolution

“Birth, Life, Death” of galaxies in the cradle of large-scale structure

1. First galaxies (birth)
 - Unprecedently deep NB imaging to detect galaxies at “cosmic dawn” (z>>7).
 - Extension of HSC optica NB survey

2. Stellar build-up (life)
 - Origin of Hubble sequence: bulge, disk, and black hole growth
 - Deep & sharp & panoramic NB imaging and 3-D spectroscopy of galaxies at “cosmic noon” (z=0.5-3.5)

3. Quenching (death)
 - Tracking down the “passive” galaxies to z~5 with deep BB/MB imaging (in K-band).
 - Environment of dead galaxies: do first galaxies die in isolation or in clusters?
 - Great synergy with WFIRST.

Galaxies at z=4

ULTIMATE

ULTIMATE
Kinematics Survey of galaxy evolution

High-redshift (z>1) extension of SDSS imaging/spectroscopy/IFU surveys at Subaru

HSC (Imaging) → PFS (Spectroscopy) → ULTIMATE Phase3 (IFU)

- SAMI observations of an edge-on galaxy at z~0 (Ho et al. 2016).

Measure properties of galaxy evolution across disk (SFR, kinematics, outflow, metallicity gradient, etc.) via emission to understand:

- quenching mechanism
- feedback process
- galaxy transformation (e.g. mergers)

(Ellis et al. 2015)
ULTIMATE-Subaru: Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLAO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AIT</td>
<td>First Light</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nasmyth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>MOIRCS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GLAO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WFI</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M-IFS</td>
<td></td>
</tr>
</tbody>
</table>

GLAO CoDR

ULTIMATE-Subaru will demonstrate GLAO operation at Maunakea in advance.
Summary

- GLAO can uniformly improve the seeing over “wide” field of view.

- GLAO (or AM2) corrected light can be fed to the all instruments from visible to mid-infrared.

- GLAO in NIR will be able to conduct spatially-resolved studies of extended source with medium spatial resolution (FWHM~0”.2)

- GLAO in visible will be able to use as a seeing enhancer

- ULTIMATE-Subaru is a GLAO project at the Subaru telescope, which provides ~14’x14’ science FoV with FWHM~0”.2 resolution in K.

- There are many technical/science overwrap with TMT GLAO.

- ULTIMATE-Subaru would be a pathfinder for GLAO at TMT.