High-Contrast Imaging at

Gas giants, ice-giants, terrestrial planets, exomoons, polarization, transits, weather, surface mapping, biomarkers, disks, planet formation, ...

High-Contrast/ExAO breakout session

Wednesday November 8th 2017				
Time	Theme	Speaker	Comments	
14:00	Goals + round table	Christian/Chris	Overview of the breakout session	
14:05	Science	Andy Skemer	L/M-band Imaging/spec.	
14:20	Science	Ruobing Dong	Young disks/exoplanets	
14:35	Science	Honda-San	protoplanetary Disks	
14:50	Science	Christian Marois	Exoplanet thermal	
15:05	Science	Dimitri Mawet	Science hires spectroscopy	
15:20	Science	all	Discussions	
15:50	BREAK	-	-	
16:00	Science	Eric Nielson	What we/will know about exoplanets cont. talk	
16:10	Science	Sujan Sangupta	Polarization	
16:20	Science	Stanimir Metchev	Variability	
16:30	Science	Etienne Artigau	Synergy of various obs techniques	
16:40	Science	Norio Narita	Transit	
16:50	Science	Jun Hashimto	SEEDS, PSI	
17:00	Science	Stanimir Metchev	Discussions	

Thursday November 9th 2017				
Time	Theme	Speaker	Comments	
9:00	Inst.	Chris Packham	MICHI	
9:10	Inst.	Mark Chun	MIRAO	
9:20	Inst.	Michael Fitzgerald	PSI	
9:30	Inst.	Dimitri Mawet	High-Res. Spect. + AO	
9:40	Inst.	Olivier Guyon	SCExAO as a prec. TMT inst.	
9:50	Inst.	Andy Skemer	L/M-band imaging/spec	
10:00	Inst.	all	Round table discussions	
10:15	BREAK	-	-	
10:30	Inst.	Benjamin Mazin	MKIDS cont. talk	
10:40	Inst.	Prashant Pathak	TMT dispersion cont. talk	
10:50	Inst.	Olivier Guyon	Round table discussions	
11:15	Inst.	Olivier Guyon	Round table discussions	
11:30	Inst.	Olivier Guyon	Round table discussions	
11:45	White papers org.	Sujan Sangupta	White papers	
12:00	Lunch	-	-	
13:30	Prep time	Christian Marois	Finalizing Presentation Preparation	
13:45	Prep time	Christian Marois	Finalizing Presentation Preparation	

Inner Working Angle 0.025" Angular Resolution 0.01"

Looking ahead to TMT

Eric Nielsen

GPIES: 380 stars

TMT: 500 stars

Looking ahead to TMT

Eric Nielsen

Conclusions

Eric Nielsen

For high-mass stars (>1.5 M $_{\odot}$), GPIES looks to be probing outer edge of RV planet populations

Strong dependence on stellar mass for high mass, wideseparation giant planets

Conservative estimate for performance of a TMT planet-imager at first light gives about a dozen new planets

TMT will let us directly probe the extent of the giant planet region as a function of stellar mass

Exoplanet (and brown dwarf) variability with TMT

• IRMS

- multi-object 0.9–2.5 micron spectroscopy enables simultaneous calibration of telluric variations
- Y dwarfs: the most characterizeable exoplanets
- PSI
 - high-dispersion spectroscopy for exoplanet tomography, Doppler imaging
 - 0.9–2.5 micron polarimetry probes the peak of the condensate size distribution

• МІСНІ / ЬМІСНІ

• 3-20 micrton spectroscopy for direct cloud composition measurements

Stanimir Metchev, UWO

• Y dwarfs

S. Sengupta Polarimetric Detection of Exoplanets and Exo-moons

Thermal radiation of L- Brown Dwarfs and Self-luminous exoplanets gets scattered by cloud particles giving rise to local polarization at optical and infra-red wavelengths.

The disc averaged net observable polarization is zero or negligibly small if the object is spherical or almost spherical.

Asymmetry introduced by rotation-induced oblateness ortransit of exoplanets/exomoons can give rise to detectable amount of linear polarization in the optical and infrared bands.

Time resolved image polarimetry by TMT can detect Earth-size Exoplanets around cloudy Brown Dwarfs and Exo-moons around self-luminous Exoplanets. Image Polarimetry will also probe cloud in the atmosphere.

Imaging and Characterizing Habitable Planets with TMT...

... will requires ~1000x gain in raw contrast over state-of-the-art New promising tools, but relatively low system-level maturity

→ If we built "to-print" a facility instrument designed TODAY, we would almost certainly fail to reach this ambitious goal

Solutions:

[1] For the most challenging science goal (hab planets), adopt flexible/ modular approach to TMT instrument. Do our best at first light, improve and solve issues as we go.

[2] Need to demonstrate and validate performance in labs and on current telescopes prior to deployment on TMT. Find out what architecture works, develop algorithms.

 \rightarrow Subaru/SCExAO provides path to quickly integrate/validate new technologies on-sky, possible hardware transfer to TMT

Notional plan toward TMT instrument

Path to TMT requires new AO woofer (~120x120 DM elements) to be built.

Fixing Atmospheric Dispersion

SCERAO

Using focal plane based technique, dispersion can be measured and corrected in a closed-loop manner to a high-precision (Pathak et al. 2016, 2017)

In H-band residual dispersion reduced from: 7.99 mas to 0.28 mas

PSI

- Drivers: characterization of exoplanets in reflected light and thermal emission
 - Goal: Biosignatures on terrestrial planets in nearby HZs
 - Constraining composition and formation pathways
 - Circumstellar disks, solar system objects, AGB star outflows
 - General-purpose 2.5-5 um imaging, spectroscopy capabilities not in first-light instruments
- Modularity
 - Core capabilities support different science instruments
 - Upgrade paths to accommodate new technology
 - Fiber feeds allow straightforward use of instruments deployed and tested on smaller telescopes
- Relatively compact
 - Diffraction-limited, narrow field-of-view optics
- Allows for phased development and deployment

PSI concept

2-5 micron Exoplanet IFS/imager

A. Skemer

Thermal Imaging of Exoplanets with TMT

WAVELENGTH (µm)

C. Marois, NRC-H

Summary of the "synergy of methods"

• Exoplanet underdogs

- Astrometry
 - ~µas of nearby stars
 - TOO for microlensing astrometric counterpart (~mas)
- Eclipse (secondary transit) mapping at very high resolution
 - ∎ >2.5µm
- ~1 m/s or better RV
 - 4-m class telescopes for surveys (very time consuming)
 - TMT for very exciting (and faint) targets
 - Requirements similar to HR transit spectroscopy
- All TMT instruments and most modes
 - Some exoplanets are isolated or at >1" separation
 - Comparison with self-luminous young giants
- HDC: what will we learn for CC with a line list?
 - No (?) possibility of broadband caracterisation
 - Terra incognita and interpretation of a handful of species will be hard
 - No equivalent to the HR8799 bcde comparison with field brown dwarf

Discussions

- Polarization
- Synergy with MICHI (blue MICHI/"Green" PSI) & MIRAO
- ASM discussions & requirements
- Cooling AO bench for MIRAO?
- Parallel observing (blue, green, red PSI).
- Expending science team (solar system, BDs, others)?
- WP strategy