Exoplanet Imaging and Spectroscopy with the TMT

 $\langle \rangle \langle \rangle$

Rebecca Jensen-Clem Miller Fellow, UC Berkeley TMT Science Forum December 10th 2018

Imaging & Spectroscopy of Giant Exoplanets

 $\langle \rangle \langle \rangle \langle$

××

MAXXINO ON

Multiwavelength spectroscopy:

- <970nm: C & O abundances from e.g. CH₄ and H₂O features
- L & M bands: C & O abundances from e.g. CH₄, CO, CO₂ features
- 10um regime: nitrogen abundances from the NH₃ feature

How do volatile abundances vary with:

- Planet-star separation?
- Planet mass?
- Host star mass?
- Host star metallicity?

Exoplanet observations across multiple techniques

 $\langle \rangle \langle \rangle$

Combining Reflected Light and Thermal Imaging

Combining Reflected Light and Thermal Imaging

- Constrain phase angles via imaging
- Measure T_{eff} via thermal imaging to constrain radius
- Radius and phase angle will inform clouds' scattering phase functions
- Multi-λ observations inform cloud composition information

Predicted population of GAIA planets detectable by TMT/PSI

Overlap with nonimaging techniques

- Exoplanet masses via RV, astrometry, and imaging
- Bulk density constraints from radii estimates and masses
- Are planets' luminosities consistent with evolutionary models?
- Are the surface gravities derived from atm. models consistent with masses?

Figure credit: Briemeister, Skemer, Brandt, Savransky, Wang, Millar-Blanchaer

Small Planets Come in Two Sizes

Caltech/Fulton+17

Imaging & Spectroscopy of Temperate Rocky Exoplanets

 $\langle \rangle \langle \rangle$

Imaging Habitable Zone Exoplanets with the TMT

Pessimistic performance

Optimistic performance

Imaging Exo-Earths at 10um

- The TMT resolves the HZ at 10 μm out to 5 pc for G stars
- At 10 μm, contrast is >100X more favorable than in vis.

 Low res. spectra at 10 μm could enable biomarker detection (e.g. O₃, H₂O, O₂, CH₄ and CO₂)

Packham+18/Hanel+72

Instrumentation for Exoplanet Imaging & Spectroscopy

XX

- IRIS
- PSI
- MICHI
- MODHIS

Diffraction-limited High-resolution Spectroscopy

<u>MICHI</u> Mid-IR Camera, High-disperser & IFU spectrograph 未知

Slide credit: Nem Jovanovic

PSI/MODHIS Timeline

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

Timeline

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

Timeline

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

Technology/technique maturation

- 1. Deformable mirror technology development
- 2. Focal plane wavefront sensing
- 3. Predictive wavefront control
- 4. Sensor fusion
- 5. Understanding the atmosphere

The TMT will revolutionize exoplanet science by imaging & characterizing the atmospheres of large samples of diverse exoplanets

 $\langle \rangle \langle \rangle$

Starshade actively matches transverse velocity and acceleration of observatory; no radial constraints

The TMT will revolutionize exoplanet science by imaging & characterizing the atmospheres of large samples of diverse exoplanets

Thank you!

 $\langle \rangle \langle \rangle$

> (>

 \mathbf{x}

Extra slides

Heinze+10

